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Introduction 
Introducing Systemic Risk Analytics: A Holistic Visualization 
and Stress Test Tool 

ystemic Risk Analytics (SRA) is a bespoke financial network analysis and 
contagion stress testing platform based on the recent developments in the area 
of  modeling financial interconnectedness and systemic risk in financial systems. 
The manual provides the user instructions for the SRA RBI App developed 

specifically for the Indian financial system.  Professor Sheri Markose, in collaboration 
with Dr. Simone Giansante and members of the Financial Stability Unit (FSU) of the 
Reserve Bank of India (RBI), has developed the key conceptual framework to 
operationalize the data driven model of interconnectedness of the Indian financial 
system in order to monitor and manage systemic risk within and across multiple 
financial sectors. Dr. Simone Giansante programmed the software for this in a web-
based application in JAVA. 

This work was started in August of 2010 and has proceeded in a modular fashion to 
encompass larger and larger segments of the Indian financial system. Dr, Rabi Mishra, 
the first Managing Director of the Financial Stability Unit of the RBI was the driving 
force behind this project.  The software that has been developed is bespoke to fit the 
institutional and regulatory frameworks prevalent in the Indian financial system and the 
RBI-FSU team, led by Dimple Bhandia, has been meticulous in gathering these details.  
The work also reflects several high level meetings and discussion sessions involving 
Deputy Governors of the RBI (Smt.Shyamal Gopinath, Mr.K.C Chakrabarthy, and Dr. 
Subir Gokarn), Executive Directors and relevant Division Heads. Deputy Governor,  
Shyamal Gopinath was instrumental in mandating who-to-whom bilateral balance 
sheet data collection from a large spectrum of financial institutions in the Indian 
financial system starting with banks.  This is a first for a central bank.  The high level 
discussions covered the scope of the online modelling of the large scale granular 
(bilateral) financial data that was being collected; what are the data gaps and the further 
mandates needed for this; and finally, on how the set of objectives evolved to guide the 
software development that can monitor and manage systemic risk in the Indian 
financial system.  Inputs from specialists and heads of electronic financial markets such 
as the CBLO (Collateralized Borrowing and Lending Obligation) and Repo markets 
have also been sought. 

 

Chapter 

1 

S 
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1.1 Multi-Agent Financial Networks (MAFN) 

Modeling1 

Summary of Objectives 

This guide covers the technical aspects of the modeling undertaken to date on the first 
ever large scale collection of bilateral financial data for financial intermediaries (FIs) 
across multiple sectors in the Indian financial system.  The RBI-FSU is first among 
central banks to mandate collection of bilateral assets and liabilities data from a large 
sample of bank and non-bank FIs of the Indian financial system.  This was initially 
done on a quarterly basis.  The objectives of the modeling framework are as follows: 

 To build an ICT (Information and Communication Technology) based 
platform, which in time has automated access to the electronically collected 
data base of bilateral financial positions of financial intermediaries (FIs).   

 To provide a digital mapping of the Indian financial system with the 
interconnectedness between financial intermediaries modeled using financial 
network analysis. 

 To provide a holistic visualization of the system with capabilities of ‘zooming’ 
to desired levels of granularity in order to monitor the topology of the network 
structures for their stability and to determine the systemic importance of 
financial intermediaries. 

 To provide systemic risk analytics. 

 

The systemic risk analytics come in two parts.  The first, called contagion analysis, 
monitors the actual pathways based on contractual obligations for the spread of 
financial contagion in the Indian financial system from the failure of one or several FIs.  
The channels of financial contagion arising from default of counterparties can take the 
form of solvency and liquidity impacts.  Solvency problems arise when losses of a FI 
exceed a certain critical threshold of its capital buffers.  Liquidity problems follow 
when a FI’s buffer of high quality liquid assets is not sufficient to cover its immediate 
liabilities and the situation is triggered, in the first instance, from counterparty default 
of a net lender or the latter withdrawing liquidity for other reasons.  Following 
discussions with regulators and practitioners, the pecking order of short term loans that 
can be called in by liquidity constrained FIs is programmed in for this stress test 
exercise.  The calling in of short term loans can exacerbate channels of liquidity 

                                                                        

1This methodology is discussed at length in Markose (2013, 2012) and Markose, Giansante and Shaghaghi 
(2013).  The specific aspects relating to the Indian financial system can be found in Markose, Giansante, 
Bhandia and Warrior (2013). 
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contagion.   The RBI SRA App has implemented the full contagion analysis when both 
solvency and liquidity contagion factors operate.   

The second part of systemic risk analysis quantifies 3 major issues:  (i) Produce a 
stability based metric, which we call the spectral systemic risk index (S-SRI), that can 
determine if the networked system has become more or less stable over time, (ii) the 
extent to which FIs are contributing to the system instability, and (iii) and how are FIs 
vulnerable to failure in a financial contagion.    

The systemic risk model we implement is based on the epidemiology literature that has 
a long provenance as a causal model of disease spreading and the tipping point it 
identifies with the maximum eigenvalue of a dynamical model built on 
interconnections of members of a social network being acknowledged to have 
produced “the foremost and most valuable ideas that mathematical thinking has 
brought to epidemic theory” (Heesterbeek and Dietz, 1996).  This method, we call the 
Eigen-pair method, was first adapted in Markose (2012) for modelling the stability of 
the networked financial system.   

Key to the method is the maximum eigenvalue of the so called stability matrix 
constructed as a network of bilateral net liabilities of FIs relative to Tier 1 capital, and  
as a fixed point result it can be interpreted as the percentage loss of capital for the 
financial system as a whole that leads to a tipping point. There is cause for concern 
when the maximum eigenvalue of this matrix exceeds the capital threshold of losses 
that the regulator deems to be the upper limit of what can be breached for purposes of 
capital adequacy.  The systemic importance of FIs is given by their rank order in the 
right eigenvector associated with the maximum eigenvalue.  The left eigenvector 
identifies the rank order of FIs that are vulnerable or exposed.  Even if the regulator 
does not choose to publicly identify and indemnify SIFIs for the threat they pose to 
others from the negative externality of their inter-connectedness and excessive 
borrowing/liabilities from counterparties, the eigen-pair method gives the regulator a 
tool to quantify a Pigou style externalities tax according to the (right) eigen-vector 
centrality of FIs up to the point where the network system can be stabilized to a 
desired level.   

This document describes the modular and scalable financial network construction that 
is being undertaken at the RBI-FSU.  It is based on the bilateral financial data obtained 
on a quarterly (and soon to be monthly) basis from about 150 core FIs encoded into 
groupings from A-J, ranging from banks to the different non-bank FIs such as mutual 
funds, insurance companies and urban and cooperative banks.  The modeling strategy 
is to first proceed in a modular fashion enlarging the financial network with agents 
being cumulatively included from the A-J groupings with the proviso that new financial 
products and markets are to be added on in due course with regulators being vigilant 
about such developments. When fully completed, there will be a digital map of each 
FI’s activities with all others, both in the non-electronically cleared and in the 
electronically cleared markets such as the Indian repo and collateralized borrowing and 
lending (CBLO) markets. The interconnections in the RTGS payment and settlement 
system will also be mapped.  The main product break downs include funded, unfunded 
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(contingent claim/derivatives), short and long term maturity buckets and selected 
secondary markets such as for certificates of deposits (CDs) and foreign currency 
convertible bonds. Note, for wider macro-prudential purposes which require the 
delineation of the transmission channels of financial risk to the real side of the 
economy, the financial interconnections between FIs also need to be integrated with 
their linkages with non-financial sector end users such as households, non-financial 
corporate sector and the public sector. Embedding the FI interconnections of the 
Indian financial system with the national sectoral flow of funds model and also the 
global financial flows defines the full scope of the highly granular systemic risk model 
that integrates the real and financial sides of the economy.2 

A brief explanation will be given for the granularity of the data collection and the use 
of computational agent-based modeling of the financial system rather than equation 
driven econometric or calibrated models.  Andrew Haldane of the Bank of 
England3has done much to propagate the Star Trek vision of an ICT based large 
electronic screen displaying financial data as an interconnected system. The RBI SRA 
App is one of the first large scale implementations of this computational modeling 
approach. The motivation behind this data driven causal balance sheet based  
framework of systemic risk monitoring will be given in the next few sections of the  
introduction while the technical details of the software outputs will follow in 
subsequent chapters.      

1.1 A    Big Financial Data 

The 2007 financial crisis highlighted the lack of understanding among economists of 
the role of interconnectedness of FIs, both nationally and globally, and also the 
transmission channels between the financial and the real side of the economy.  
Mainstream macroeconomic models such as Dynamic Stochastic General Equilibrium 
(DSGE) had, at best, a representative banking sector which does not suffer problems 
of illiquidity or insolvency let alone pose a threat from domino type failures that 
became a reality during the 2007 crisis.  At worst, these models did not have a financial 
sector at all.   

Pre-2007, the regulatory banking and financial framework was focused on micro-
prudential policy of capital requirements based on metrics such as Value at Risk (VAR).  
This required banks to hold capital to protect themselves from the risks arising from 
their own investment portfolios.  The threat that they pose by their failure to other 
members of the financial system and to the real side of the economy from leverage 
fuelled excessive risk taking was not modelled and estimated by regulators. To avert 
greater losses from the activities of FIs for the rest of society, financial sector bailouts 
estimated to be the largest to date during the course of the 2007 financial crisis, were 
borne by tax payers.  It is increasingly being recognized, such as  with the Dodd Frank 
Act and the setting up of the Financial Stability Board, that this moral hazard problem 

                                                                        

2See, Markose (2013) for a fuller discussion on this. 

3See, Haldane (2009) and his speech at the 2013 January BCBS Workshop. See also, Buchanan (2009). 
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needs to be addressed. The negative externality that arises from a misalignment 
between the behavior of financial intermediaries pursuing private objectives and system 
wide stability is a non-trivial problem for which holistic visualizations of ‘big’ financial 
data is part of the solution.  In addition, regulatory frameworks can be fraught with 
perverse incentives and they need to be computationally stressed tested for this prior to 
implementation and monitored in an ongoing way, Markose (2013).   

Research and development of web based visualization of financial data and real time 
operations relating to financial crisis management has only just started.  The 
fundamental computational methodology for web based visualization of complex data 
sets is object oriented programming (OOP) and multi-agent modeling.  The 
technological ICT aids of the ‘zoom’ that can navigate between the coarse grained 
bird’s eye view and the fine grained ones can mitigate the well known befuddling 
aspects of  not being able to see ‘the woods for the trees’.  The ‘probe’ can automate 
and highlight behind the scenes hidden links of each FI in multiple markets.   

Agent based computational economics or ACE using the acronym coined by Leigh 
Tesfatsion (see,  Tesfatsion and Judd (2006), Le Baron (2000))  based  on object 
oriented programming  (OOP) can produce agents that are both inanimate (eg. 
repositories of data bases) as well as behavioural agents capable of varying degrees of 
computational intelligence.  These range from fixed rules to fully adaptive agents 
representing real world entities (such as banks, consumers and regulators) in artificial 
computer environments which can be replicas of, for instance, the financial system.  
Unlike conventional programming in which a program entails a lists of tasks or 
subroutines, in ACE and OOP, each agent which is an instance of a class is capable of 
interacting with other agents by receiving and sending ‘messages’, processing data, and 
producing outputs on the basis of their computational intelligence. 

In financial networks, nodes can stand for financial agents such as banks, non-bank 
intermediaries, the final end users and central banks. The edges or connective links 
represent directed inflows (in degrees) of liquidity or receivables, and outflows (out 
degrees) represent obligations to make payments. By data base driven multi-agent 
financial networks (MAFNs) is meant that disaggregated data at the level of individual 
FIs with regard to bilateral flows to each of their counterparties will have to be 
accessed electronically to provide ‘as is’ quantitative characteristics of FIs based on 
their contractual obligations.   

Integration and automation of financial data bases in a MAFN framework, therefore, 
aims to transform the data from a document or record view of the world to an object-
centric view (see Balakrishnan et. al. 2010), where multiple facts about the same real-
world financial entity are accessed to give a composite visualization of their interactions 
with other such entities in a scalable way.4 

                                                                        

4See the IBM MIDAS project reports (Balakrishnan et. al., 2010, Hernandez et. al., 2010) on software 
technologies being developed for large scale firm level financial database driven models for systemic risk 
analysis. 
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1.1 B     Data Visualization: Holism and Granularity 

Figure 1 gives a taster for both granularity and holism, respectively, at the level of each 
FI in a multi-sectoral network graph for the Indian financial system which incorporates 
bank holding companies, including foreign banks operating in India and non-bank 
financial institutions such as mutual funds, insurance companies and urban and 
cooperative banks.  Note, in Figure 1 and Figure 2, the direction of the arrow indicates 
the net liabilities owed by financial institutions to their creditors (nodes at which the 
arrow heads end); red nodes denote net borrowers and blue nodes are net lenders. The 
thickness of the arrows indicates the size of the flows.  

 

Figure 1 - Granular Multi-Sector Network Map of Indian Financial System (2012 
Quarter 4): SRA Graphics 

Notes: Tiered central core of Commercial and Public Sector Banks (Circles), Top LHS 
Insurance Companies (Triangles), Top  RHS Mutual Funds (Ellipses), Bottom LHS 
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Urban and Cooperative Banks, Bottom (Squares), middle RHS Foreign Banks (Code 
D) with each FI having its own specific encoded ID.            

The colour of the arrows Figure 1 relate to where the FI is placed in terms of tiering of 
the network. FIs are tiered according to the percentage of total in and out links they 
have relative to the total in and out links.  The green arrows start from FIs in the 
central core of the network; yellow arrows belong to those in the so called mid core; 
the grey arrows arise from the ‘out core’ and finally the pink arrows belong to those in 
the periphery.    

The granular holistic network in  of the (non electronically cleared) Indian financial 
system is laid out  in the following way.  The banks (circles, with codes A- D) are 
shown in the center of  Figure 1with the full tiering structure for this group of FIs 
given by the concentric circles.  The Life Insurance companies (triangles, with codes H) 
are on the top left hand side (LHS), the Mutual Funds flat elipses on the top right hand 
side (RHS)) and the Urban and Cooperative banks (diamonds, with codes E) on the 
bottom LHS.  

As blue nodes denote net liquidity providers, Figure 1 reveals the fact that the net 
liquidity suppliers in the Indian financial system are Life Insurance Companies (top 
LHS, Triangles, in  Figure 1), mutual funds (top RHS, Ellipses in Figure 1) and many 
of the smaller Urban and Cooperative Banks (bottom RHS, Squares). The majority of 
bank holding companies are net borrowers.  Banks, therefore, pose a threat to the 
wider system of FIs than just to other banks, while vulnerability of insurance 
companies and mutual funds can trigger liquidity problems. Thus, focusing only on 
banking sector interconnections, as the bulk of many financial network studies have 
done to date, may give the wrong picture of systemic risk.  Further, the largest of the 
Urban and Cooperative banks (bottom LHS in Figure 1) is a net borrower and can 
pose a threat, especially, to the smaller banks in this class.  Finally, a visualization at this 
level of detail can highlight the case of a foreign bank (D016), which  is found to be a 
very large net borrower from an Indian Mutual Fund (G004), pink arrow on the top 
RHS of Figure 1.  This allows the Deputy Governor in charge to quickly send a query 
regarding this.  Indeed, this holistic network visualization in Figure 1 based on 2012 
bilateral balance sheet data, has presaged the trouble that was brewing in the 
relationship between foreign banks and Indian mutual funds.  

In Figure 2, the degree of granularity of all categories of Indian FIs is drastically 
reduced as they are, respectively, aggregated into single nodes.  As will be explained in 
what follows, SRA provides automated visualization of the data at all levels of 
granularity.           
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Figure 2 - Respective Indian Financial Sectors Aggregated Into Single Nodes (2012 
Quarter 4): SRA Graphics 

Figure 3 shows how the insurance companies and mutual funds are primarily exposed 
to public sector banks to the tune of around 68%-69% in 2012.  The exposure of 
insurance companies to new private sector banks is about 32 % while old private sector 
banks have only a 3% share, which is close to that of foreign banks of 2%.  Mutual 
funds have an exposure to new private sector banks of about 24%, while that to old 
private sector banks is about 7% and foreign banks is 1%.   
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Figure 3 - Exposures of Insurance Companies and Mutual Funds to Other FI Groups, 
Comprising Weighted Flows in Figure 2 ( 2012 Quarter 4) 

In principle, each FI entails a vector of financial activities operating in a multi-layer 
system of markets for different financial products, each of which has its own network 
topology, institutional incentives and constraints. This is illustrated in Figure 4.   
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Figure 4 - Single Layer Network (LHS) and Multi-Layer Networks (RHS) 

In the multi-layer networks in Figure 4(RHS), the broken vertical lines show the FIs 
that are common to the different networks for financial products and hence they can 
become the conduit by which an exogenous shock in one market can be propagated 
across other markets.  Indeed, considerable investment5was made in this RBI SRA App 
(version 2.0.1) software to access and deal with data for different products/markets in 
a multi-layer network framework, viz. bilateral data from multiple markets can be 
loaded and dealt with simultaneously. This adds flexibility and versatility for the App so 
that it is not constrained with depicting only a single layer network format with 
aggregation of a FI’s bilateral positions with counterparties across all products. In the 
liquidity contagion stress test when loans are called in from counterparties for some 
categories of assets and not others, a multi-layer network format is essential to keep 
track of this. 

It is now well understood that topology of the network in each market and netting 
constraints across products6 have implications for the adequacy of capital and liquidity 
and hence on the stability of the system. In the exercises done for the Indian financial 
system this was first observed when bilateral cross product netting was not permitted 
for different asset categories such as funded and unfunded products. The reduced 
netting benefits increased the maximum eigenvalue of the single layer financial network 
obtained without cross netting between the asset categories.  This was reported in the 
presentation given by Sheri Markose in September 2012 at the RBI.  Hence, for 
purposes of regulatory monitoring, the current RBI SRA App permits quarter by 
quarter snap shots of network visualizations and analytics of bilateral financial flows 
data both for specific financial products and as a single layer network for flows 
aggregated across all products or subsets of products. This is important so as not to 

                                                                        

5Indeed, in 2013 Simone Giansante had to devote considerable amount of his time to revamp the previous 
edition of the RBI SRA App to fully implement the multi-layer framework in this version.    

6This is currently being intensively investigated in the context of changing the topology of the OTC 
derivatives markets reform by using single product CCPs or CCPs for multi-product clearing (see, Duffie and 
Zhu (2011) and Heath et. al. (2013)).                 
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underestimate instability of the system and of the centrality/systemic importance of FIs 
in it.     

1.2 Why Mandate Bilateral Balance Sheet and Off Balance 

Sheet Data To Map Financial Interconnectedness? 

Two reasons are given here for why the study of financial interconnectedness and 
systemic risk monitoring and management makes it imperative that financial regulators 
mandate the collection of bilateral financial data for FIs.  The first is that market price 
based systemic risk measures, though popular as market price data is publicly available, 
are known not to be able to provide early warning signals.  The second reason is that 
the calibration and estimation, of bilateral financial liabilities and exposures between 
counterparties from aggregated data across all counterparties for each FI’s position 
across all financial instruments or in product specific markets, is fraught with 
difficulties that render such exercises of limited use for regulatory purposes in 
measuring risk for the system as a whole and in particular for identifying systemically 
important FIs in a quantitative way.7 These issues will be discussed in turn below.  

Market Price-based Systemic Risk Measures: No Early Warning    

The lynch pin of pre 2007 risk management was market price based metrics with Value 
at Risk (VaR) having featured prominently for the determination of capital buffers. 
Volatility indexes such as the VIX and VFTSE, and credit default swap premia that 
determine probability of default on underlying reference entities which include financial 
firms and sovereigns have also been used in recent systemic risk measures. 

At a number of forums in September 2012 and April 2013 of the RBI-FSU and the 
RBI Deputy Governors and Executive Directors, it was identified that market price 
based systemic risk measures are particularly unsuited to give early warning signals for 
an impending crisis: by the time market price based systemic risk indexes have spiked, 
financial markets will already have tanked, Markose (2013).  They have been found to 
suffer from the so called volatility paradox, Borio and Drehmann (2009), which is 
associated with the cyclicality and regime sensitivity of market risk measured by 
volatility of asset returns such as that for the stock index which results in the 
underestimation of systemic risk during asset price booms.   

This can be seen in publicly available volatility indexes in that they are extremely low 
during market booms and are at a local minimum (Figure 5) just before the market 
crash (at the highest point of the boom in the stock price index) and those who are 
ignorant of this can be lulled into a false state of complacency when systemic risk is 
                                                                        

7Some of these issues were raised by Biasis (2012) in their survey on recently proposed systemic risk analytics, 
especially for the class of Pigovian capital surcharge.  They note that the many ad hoc model related 
assumptions, calibrations and data manipulations, make it questionable whether FIs will or should be made 
liable for less than robustly derived surcharges.  Indeed, Markose (2013) has argued that FIs cannot be held 
culpable for damage to others from pre-existing macro-economic conditions such as loose monetary 
conditions or future market conditions that may arise, for example, during deleveraging that are unknowable 
at the time the financial contracts were entered into with counterparties. FIs can be indemnified only on the 
basis of systemic risk measures based on legally binding contractual obligations to counterparties. 
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building up on balance sheets of FIs and households through increased indebtedness.  
This has been noted by Hyman Minsky (1982) under the rubric of ‘paradox of stability’ 
in that the seeds of financial crisis are sown during conditions of market upturns.  
Enhanced market values for assets of FIs enable increased borrowing.  The risk 
weighting of assets and RWA capital requirements exacerbates this procylicality. These 
ideas on the procyclicality of leverage are well articulated in Adrian and Shin 
(2010,2011). 

In Figure 68, the Sergoviano-Goodhart credit default swap market price based banking 
stability index (green in Figure 6) spikes are at best contemporaneous with the crisis 
marked by the publicly available volatility indexes such as VIX or V-FTSE.  In the 
worst case, such market price based systemic risk indexes will show up after the crisis. 
This is the case of the Contingent Claims analysis (CCA) based distance to distress 
(DD) systemic risk measure used by Castren and Kovonius (2009) with a high DD 
signaling low distress.  The DD measure “dropped sharply only after (italics added) the 
crisis had started” (ibid). They claim that the high DDs “in the years 2005-06 were 
mainly driven by historically low volatility … even though from the market leverage 
data, it is clear that vulnerabilities were gradually accumulating in the form of rising 
indebtedness in most sectors” (ibid). 

 

Figure 5 - "Paradox of Stability": Stock Index and Volatility Index.; Paradox of 
Volatility (Borio and Drehman, 2009; Minsky, 1982). 

                                                                        

8Figure 5 and Figure 6 were the one which Sheri Markose used in her talk at the 2010 IMF Workshop on 
Operationalizing Systemic Riskand they have been published in Markose (2013). 
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Figure 6 - Banking Stability Index (Segoviano, Goodhart 09/04) vs Market VIX and F-
FTSE Indexes 

Attempts to produce, for example, systemic risk indexes for the banking sector, from 
individual metrics for risk management such as VaR or expected shortfall, have relied 
on incorporating a portfolio of such individual FI risk measures. This has entailed 
simple weighted averages and in some cases the cross sectional co-movements and 
dependence structures have also been explicitly modeled. Some of the market-based 
systemic risk measures that have been proposed are the following (see, Biasis  et. al. 
(2012) and Markose (2013) for a discussion on these): Conditional VaR (CoVaR)  
Adrian and Brunnermeier (2009); Marginal System Expected Shortfall (MSES) Acharya 
et al. (2010); Co-risk by Chau-Lan (2010); DIP (Distress Insurance Premium) by 
Huang et al. (2010); POD (Probability that at least one bank becomes distressed) by 
Segoviano and Goodhart (2009), Shapley-Value by Tarashev et. al. (2010) and Macro-
prudential capital by Gauthier et. al (2009).   

Diebold and Yilmaz (2011) developed the Connectedness Index (DY-CI) for banks by 
applying network topological measures on the econometric decomposition of forecast 
error variances from a vector auto-regression model for the stock return volatility for 
the selected banks.  While the DY-CI yields good cross-sectional information, the total 
rolling DY-CI (given in Figure 2 of Diebold and Yilnaz (2011)) shows that it fell in the 
period around 2006 and remained subdued till close to the 2007 crisis. It is also said 
“not to provide signals of increasing risk from higher leverage in banks' balance 
sheets”, Saldias (2012). 

A recent IMF study by Arsov  et. al. (2013) designed the Systemic Financial Stress 
(SFS) index which records the extreme negative returns at 5 percentile of the (left) tail 
for the joint distribution of returns of a selected sample of large US and Eurozone FIs. 
To qualify for inclusion in SFS, in addition to the above, banks also had to experience 
such negative returns cumulatively for a period of 2 weeks.  The IMF SFS index  
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specifies a threshold for extreme stress as one where 25% of FIs suffered such 
conditions.  This index was recorded on a weekly basis for the period from 2002-2011. 
Ten market based systemic risk indicators (some of them listed above such as Co-VaR, 
Sergoviano-Goodhart JPoD and DD ) were back tested over this period to see if they 
had any predictive capabilities with respect to the IMF SFS index. The IMF study of 
Arsov et. al. (2013) acknowledge that the market  price based systemic risk measures at 
best provide near coincident and coincident signals for crisis and were mostly devoid of early 
warning capabilities (Figure 4, ibid).   Arsov et. al (2013) express the hope that some of 
their market-price based ‘near coincident’ indicators will give policy makers what 
appears to be a few weeks, if that, to “prepare for contingencies (for instance, to release 
capital buffers that have already been built in advance, and to identify recapitalization 
needs at a time when the probability of a financial crisis is already very high).” Figure 5 
in Arsov et. al. (2013) shows that some indicators provided SFS stress signals round 
about July 2007, while others took well into 2008 to register stress. Whether such near 
coincident indicators can give sufficient time to prepare for contingencies is doubtful. 

Finally, it is useful to consider the loss multiplier metric for systemic risk that Castren 
and Racan (2012) applied to cross border financial flows involving reporting national 
banking systems.  The loss multiplier estimates losses of capital to the system as a 
whole from the failure of one node in the financial network with its own capital losses 
taken as the initial point for the multiplier.  Again, a systemic risk measure based on the 
Castren-Racan (2012) loss multiplier as shown in Figure 7(blue lines), unfortunately, 
peaks well after the crisis has started and the asset side of FIs is considerably weakened.  
That the loss multiplier is modest during the asset price boom from  2003-2008  and 
does not shown up till after a major market downturn weakens balance sheets should 
not be a surprise and ipso facto  disqualifies it as a useful systemic risk measure if early 
warning is sought. In contrast, a direct measure of the Markose (2012,2013) maximum 
eigenvalue, (the green line in Figure 7)of the matrix of liabilities of countries relative to 
Tier 1 capital of the exposed national banking systems, will capture the growing 
instability of the network system relative to the distribution of capital buffers well 
ahead of the actual crisis.       
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Figure 7 - Castren-Racan Loss Multiplier Systemic Risk Measure (blue) vs. Markose et 
al (2012, 2013 grenn) Maximum Eigenvalue of Matrix of Net Liabilities Relative to Tier 
1 Capital 

There is currently a serious problem among economists about accepting the fact that 
prices in efficient markets are an instantaneous reflection of contemporaneous market 
conditions and is devoid of information of future market conditions.  In addition to 
the iron clad nature of volatility paradox that renders market risk and credit risk/default 
risk to be attenuated during asset price booms, attempts to data mine market price data 
for early warning systemic risk signals is an exercise that has had limited success.     

In the light of the above, if risk from growing leverage and indebtedness among FIs 
has to be evaluated relative to Tier 1 capital buffers of counterparties, then direct access 
to bilateral balance sheet (and off balance sheet) data of FIs needs to be mandated.  A 
further reason given below on why mandating bilateral financial data is important is 
that stability of network systems and how they propagate contagion is closely related to 
the topology of the network.  Attempts to calibrate or estimate network of financial 
obligations from balance sheet data which is aggregated across counterparties have not 
proven to be robust and hence systemic risk measures based on this will suffer from 
model risk.  In Figure 7, the systemic risk measure directly relating to the stability of the 
networked system of global banking flows estimated by the maximum eigen-value of 
the matrix of exposures that national banking system faced relative to their Tier 1 
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capital gives all the warning that is needed that they are undercapitalized relative to an 
absolute 6% Tier 1capital threshold (RHS axis ofFigure 7)two years prior to the advent 
of the financial crisis in 2007.   

1.3 Problems with Estimation and Calibration of Network 

Interconnectedness From Balance Sheet Data For FIs 

Aggregated Across Counterparties 

Since the classic Furfine (2003) stress tests that used financial balance sheet 
interlinkages to analyse financial contagion from the failure of a ‘trigger’ FI, a very large 
body of work using network analysis (see, Upper(2011),  Markose (2012) and Yellen 
(2013) for recent reviews) has developed for systemic risk management.  However, 
post 2007 financial networks models have yielded mixed results and have not provided 
sufficient understanding of the topology of real world financial systems or how 
contagion propagates through them. Financial networks have either been assumed to 
be random with no discernible structures or assumed to be complete networks where 
every FI is connected to everybody else.  A number of analytical and numerically based 
studies on financial contagion have been confined to random graphs such as Nier et al. 
(2007) and Gai and Kapadia (2010). These yield interesting qualitative insights but as 
financial networks are far from random, they have some way to go. The use of the 
entropy method  (see, Upper and Worms (2004) and Boss et al. (2004)) for the 
construction of the matrix of bilateral obligations of banks which results in a complete 
network structure for the system as a whole, may greatly vitiate the potential for 
network instability or contagion.  

Network Topology Matters for Stability of Interconnected System 

Many have now acknowledged that assumptions that the financial network is a random 
one or one constructed using a maximum entropy algorithm are misleading (see, 
Mistrulli, 2011) with regard to the stability of the financial network.  In a recent paper 
by Solorzano-Margain et. al. (2013) based on extensive bilateral data on liabilities and 
exposures of FIs in the Mexican financial system, financial contagion arising from the 
unexpected failure of an FI on others is found to be more widespread than from 
results obtained from calibrated financial network models based on maximum entropy 
algorithm surveyed in Upper (2011).  This has meant that in order to avoid model risk 
arising from calibration algorithms, structural bilateral balance sheet and off balance 
sheet data based network models are needed to study systemic risk from financial 
interconnections. Just as with the use of market price data based systemic risk indexes, 
wrongly calibrated financial network models can lead to wrong conclusions about 
impending crisis or systemic risk. 

In summary, and as will be briefly illustrated below, it is important to map the actual 
interconnections between FIs because network topology is a major determinant in how 
contagion propagates and the system fails.  Interventions and stabilization crucially 
depend on knowing who is linked to whom.   
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It was as recent as the work by Craig and von Peter (2010) who used bilateral interbank 
data from German banks to identify that a tiered core–periphery structure persisted in 
the bilateral flow matrices.  This network structure which is sparse is very unlike that in 
a complete or a random network.9 The following matrix M describes the core-
periphery structure: 











PPPC

CPCC
M  

Here, CC stands for the flows among the core banks in the centre of the network, CP 
for those between core and periphery banks, PC is between periphery and core banks 
and PP stands for flows between periphery banks. The sparseness of the matrix relates 
to the fact that PP flows are close to zero and banks in the periphery of the network do 
not interact with one another.   

In keeping with the above discussion on network structures, the different segments of 
the Indian financial system show different degrees of tiering and sparseness.  Figure 
8(Top RHS) shows how the unfunded derivatives market network structure for the 
Indian financial system is the most tiered with a small central core and most remaining 
banks belonging to the periphery.  The funded interbank market, Figure 8(Top LHS) 
has multiple tiers and a diffused core with more members belonging to the inner tiers 
than on the periphery.  The RTGS is the least tiered with very few FIs in the periphery. 

                                                                        

9The criticism Craig and von Peter level at extant financial networks literature is worth stating here. They say 
that popular interbank models (e.g. Allen and Gale (2000), Freixas et al. (2000), and Leitner (2005)) ignore the 
tiered structure and do not analyze it in any rigorous way : “the notion that banks build yet another layer of 
intermediation between themselves goes largely unnoticed in the banking literature”.  The traditional approach 
to modeling risk sharing in financial institutions as being one of responding to random shocks as noted by 
Craig and von Peter (2010) goes against the evidence on “the persistence of this tiered structure poses a 
challenge to interbank theories that build on Diamond and Dybvig (1983). If unexpected liquidity shocks were 
the basis for interbank activity, should the observed linkages not be as random as the shocks? Should the 
observed network not change unpredictably every period? If this were the case, it would make little sense for 
central banks and regulatory authorities to run interbank simulations gauging future contagion risks.” 
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FUNDED DERIVATIVES

RTGS • Top RHS Derivatives Exposures 

: Shows highly tiered core-

periphery structure with large 

numbers of participants in the 

periphery and a few in the core

• Top LHS Interbank Exposures: 

Shows a more diffused core with 

more numbers of banks in the 

core

• Bottom: network for Indian 

RTGS shows no marked tiering 

with few financial institutions in 

the periphery

 

Figure 8 - Tiering Structures in the Different Financial Markets of the Indian Financial 
System (2012 Quarter 4) 

The network structure of the unfunded derivatives markets was first described as being 
too interconnected to fail in the empirically calibrated data based US Credit Default Swap 
(CDS) market network of Markose et al.  (2010). These networks with very sparse 
adjacency matrices and high clustering of the core financial intermediaries were also 
found to propagate contagion in a very different way to random networks and 
complete ones. 

Markose et. al (2010, 2012) show how failure of a node, the one placed in the centre of 
the networks in Figure 9,  propagates contagion in a random network structure  (right) 
and that in a core-periphery sparse network (left).  The latter depicts what it means to 
be too interconnected to fail.  The highly tiered network has a central core of large banks 
which are densely and directly connected.  A large proportion of the members of the 
central core can collapse when any member in it takes a hit. The contagion stops at this 
point as the network loses connectivity with the demise of the super-spreaders.  But in 
the spirit of being too interconnected to fail, 4 top global banks are brought down, Figure 9 
(left). It is of course cold comfort that there are no second order failures spreading to 
the whole system when the first order shock from the failure of a core bank wipes out 
the top 4 banks and some 70% of Tier 1 capital of the system. In contrast, the random 



I N T R O D U C T I O N  

 23 

network with no tiered structure and no bank is too interconnected, suffers as many as 
17 (out of the 26) bank failures in a series of cascades which cannot be predicted, 
Figure 9(right).  Thus, as in the context of controlling epidemics, the clustered network 
allows easier solutions in terms of inoculating the few super-spreaders, while in the 
random network the whole population has to be inoculated. Haldane(2009)calls such 
hub banks ‘super-spreaders’ and he recommends that super-spreaders should have 
larger buffers.  From a perspective of an epidemic, such highly tiered sparse network 
systems can be viewed as being superior to random graphs in that the bulk of the 
population on the periphery cause no contagion and can be shielded from contagion 
from the ‘super-spreaders’ if the hub buffers are strengthened. 

 

Figure 9 - Instability propagation in Clustered Empirical CDS Network (left) and in 
Equivalent Random Network (right) NB: Black nodes denote failed banks with 
successive concentric circles denoting the q-steps of the knock on effects. Source: 
Markose et al. (2012). 

Even having produced network visualizations from bilateral financial data for FIs, the 
challenge has been to produce metrics to indicate whether the system has become 
more or less stable and also to identify over time which FIs are contributing to system 
instability.  In this, it is important to move away from the market price based systemic 
risk measures not just because they are only able to produce coincident or near 
coincident signals for financial crisis , but because even if they embed probabilistic 
losses to others from failure of FIs, they do not directly model network stability as a 
property of dynamical systems.  Stability of dynamical systems universally needs to use 
some eigen-value or spectral analysis.  This was first identified by Robert May 
(1972,1974) as the May-Wigner condition as ‘tipping points’ for a networked system.    

In his study of instability of large networks, May showed that network stability depends 
on the size of the maximum eigenvalue of an appropriate dynamical characterization of 
the network system.  For a sparse network which has a matrix of bilateral entries given 
by (standard) normally distributed real numbers, May (1972, 1974) derives a closed 
form solution for the maximum eigenvalue of the network.  The May stability 
condition is defined in terms of 3 network parameters: N, the number of nodes, C, the 
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probability that any two randomly selected nodes are connected, and σ, the standard 
deviation of node strength.10  When the latter statistic is large, it indicates the 
asymmetry in the number and weights of the out links that some nodes have relative to 
others.  A network is determined to be unstable if its maximum eigenvalue is greater 

than 1, viz. √𝑁𝐶σ >  1. May showed that an increase in the number of nodes in a 
network along with its connectivity that is also accompanied by a growing standard 
deviation in node strength, contributes to instability.  This implies the following trade 
off, not sufficiently understood by economists in their studies of financial networks:  if 
the size and connectivity of a network grow, unless it is becomes more homogenous in 
node strength, it will become more unstable.  Conversely, large networks such as those 
for financial derivatives, Markose (2012), which have fat tailed link distribution and a 
large standard deviation in node strength, need to have very low connectivity, C, to 
remain stable. Thus, network construction algorithms such as the entropy 
maximization one by homogenizing cell entries can spuriously reduce network 
instability (see, Mistrulli (2011), Solorzano-Margain et. al. (2013)).   

The Role of Capital Thresholds or Cure Rates in Contagion Models  

In the adoption of the May (1972, 1974) framework in epidemiology models and 
models of internet security as in, respectively, Wang et. al (2003) and Giakkoupis et al 
(2005), the network stability depends on whether the maximum eigenvalue of an 
appropriate dynamical characterization of the network system exceeds a common 
threshold.  This threshold is the cure rate in epidemiology or the proportion of buffers 
that have to be compromised before the contagion can spread. 

To date in FSB circles, it has not been sufficiently understood how critical the setting 
of the capital thresholds are for the detection of stability of the financial network. If the 
so called ‘cure rates’ or proportion of buffers are inadvertently set too high, it will 
appear that the system is stable vis-à-vis contagion.  Indeed, in some quarters it has 
become fashionable to say that direct contagion losses from interconnectedness of 
balance sheets of FIs are not a significant threat.  For example in Brunnemeier et. al  
( 2013) European Systemic Board study of the financial network of a segment of the 
derivatives market (comprising of CDS on European Sovereign reference entities) was 
reported to have negligible incidence of direct contagion losses even with the failure of 
major broker-dealer participants. On closer examination of the capital threshold that 
was being assumed to being necessary to be breached for insolvency, this was found to 
be more in keeping with the entire financial assets  for a FI rather than for the subset of 
derivatives liabilities being analyzed.       

Thus, while it is meaningful to analyze and monitor the stability of any specific financial 
sector using the eigen-pair method, care must be taken to close off the matrix of 
financial flows appropriately with a node created to represent flows to and from 
members of the financial group to those not in the group. Secondly, the capital 

                                                                        

10Node strength here is a simple measure given by the row sum of the matrix. 
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thresholds for losses have to be specified carefully.  Inadvertent errors can arise from 
two sources.  

(i) The well known Basel II criteria for the determination of the on-set of capital 
inadequacy in a bank from losses of receivables from counterparties can be 
stated as follows: 

𝑇𝑖𝑒𝑟 1 𝐶𝑎𝑝𝑖𝑡𝑎𝑙−𝐿𝐺𝐷 

𝑅𝑊𝐴 
< 0.06 = TRWA. (1.1) 

Here LGD is loss given default and the capital loss threshold of in the 
contagion analysis for bank failure in terms of RWA is denoted as TRWA.  In 
equation (1.1), the Tier 1 capital threshold is assumed to be 6%.  However, as 
the practical aspects of avoiding insolvency requires recapitalization, it is 
important to see the equivalence of the above Basel rule with permissible LGD 
set as function of a ratio of  Tier 1 capital, denoted as TC such that TC xTier 
1capital = LGD.  Substituting this into (1.1) when the condition in (1.1) is 
exactly met, we have: 

                    TC
     =   1 - (TRWA

𝑅𝑊𝐴

𝑇𝑖𝑒𝑟 1 𝐶𝑎𝑝𝑖𝑡𝑎𝑙
  ).      (1.2) 

In the work done by Markose and Giansante for the Indian financial system 
which is reported in Markose et. al (2013), it was found that the application of 
the Basel II capital adequacy criteria in (1.1), given that on average Indian 
banks hold about 9.4% - 9.8% Tier 1 capital in terms of RWA in all quarters of 
2011/2012, implies that a bank have to lose between 36% - 40% of Tier 1 
capital (in absolute terms) before they are considered to be in distress.11  

In the September 2013, the Macroeconomic Impact Assessment Group 
for OTC derivatives Reform  (MAGD) Report, that was commissioned by 
the BCBS and the FSB, cites very low contagion impacts from the failure of 
G-SIBs, echoing the European Systemic Board conclusions of Brunnemeier et. 
al ( 2013). The MAGD Report used the leverage ratio (K/A, where K is Tier 1 
Capital and A is total assets) with the proviso that losses from derivatives assets 
to Tier 1 Capital needs to bring the leverage ratio to below 2.5% to deem the 
16 broker dealer G-SIBs and other banks to be in a state of ‘crisis’ or 
insolvency in the contagion analysis.  Starting with a 6.26% leverage ratio 
reported to be the average for US G-SIBs for 2012 Q4 using GAAP12,  the 
2.5% leverage ratio ‘crisis’ threshold implies that US G-SIBs can lose  up to 

                                                                        

11For this, note 
𝑅𝑊𝐴

𝑇𝑖𝑒𝑟 1 𝐶𝑎𝑝𝑖𝑡𝑎𝑙
in (1.2), viz the reciprocal of the Tier1 Capital to RWA ratio for the Indian banks 

is about 10.63 to 10.20.  Substituting these numbers into (1.2), this gives the permissible LGD to Tier 1 
Capital ratio, TC, to be between 36%  - 40%.   

12Recently, the US Federal Reserve Bank made the announcement that the minimum Basel III leverage ratio 
would be 6% for 8 US G-SIB banks.  The average leverage ratios for 2012 2nd quarter for US G-SIBs are 
given below to be 6.26% under GAAP and 4.30% under IFRS,    
http://www.fdic.gov/about/learn/board/hoenig/capitalizationratios.pdf. 

http://www.fdic.gov/about/learn/board/hoenig/capitalizationratios.pdf
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61%13  of their Tier 1 capital on average before they are declared in a state of 
crisis. If on the other hand, the IFRS leverage ratio is used, assets in the 
denominator are calculated on the basis of less generous netting especially for 
derivatives assets, as the average IFRS leverage ratio for US G-SIBs is 4.30% 
then the 2.5% leverage ratio crisis threshold implies that losing about 42% of 
Tier 1 capital on average is permissible.   

Thus, using the leverage ratio of 2.5% as a threshold for contagion from 
insolvency in the MAGD Report stress test platform implies very large 
permissible loss given default as a percentage of Tier 1 capital for US G-SIBs.  
It is unrealistic to assume that banks can survive with losses of 35% and 
upwards of Tier 1 capital.14 

(ii) Secondly, when only a subset of total liabilities of a FI is being considered,  
even if there is a 100% default on this subset of a FI’s liabilities, this may 
remain less than upwards of 30% of total Tier 1 capital held by its 
counterparties (using the Tier 1 capital to RWA criteria or the leverage ratio 
criteria of the MAGD Report). It will, therefore, appear that no problems of 
direct contagion can arise from this segment of financial markets.  This is, 
ofcourse, the wrong conclusion as losses on a subset of a FI’s total liabilities 
must be offset against the pro rata Tier 1 capital that the exposed counterparty 
holds against this category of assets.  In other words, such generous contagion 
capital loss thresholds (viz. involving all of Tier 1 captial ratio)  when applied to 
financial networks representing subsets of total assets of a FI will only confound 
the problem of inappropriateness of the thresholds being used in many recent 
network based contagion analyses.   

In summary, all financial contagion modelers of financial networks have to specify an 
appropriate threshold at which bank/nodes are declared ‘dead’, insolvent or in crisis.  
The discussion above highlights that there are some important clarifications needed 
here. It is crucial for the modeler/regulator to understand what such thresholds 
involving ratios of assets as in the leverage ratios or in the case of risk weighted assets 
imply in terms of permissible loss of Tier 1 capital in absolute terms.   

                                                                        

13Here simply use the formula for numerator and denominator of the leverage ratio adjusted for losses given 
in equation (3) page 25 MAGD report. In the GAAP case the implied LGD (loss given default) for the 
leverage ratio to fall to 2.5 % is given by  [(642.799- LGD)/(10219-LGD)] = .025 where average Tier 1 capital 
is $642.77 bn and $10219bn is the average asset size for the 6 US G-SIBs using GAAP, reported in FDIC 
weblink given in footnote 10.  This implies LGD to equal $397.2307 bns which is 61% of average Tier 1 
capital of $642.77 bn in the GAAP case.  When IFRS average leverage ratio for 2012 Q2 data is used with 
average assets given as $14693 bn, implied LGD is given by  [(631.799- LGD)/(14693-LGD)] = .025.  The 
LGD works out to be $271.255 which implies a 42.9% of the average Tier 1 capital of $631.799 for the US G-
SIBs under IFRS accounting rules.     

14Sheri Markose, who was an academic advisor to the MAGD Report, was able to draw on her experience 
with the Basel RWA thresholds in the contagion analysis of the Indian financial system.  She pointed out that 
the absence of contagion in the MAGD stress tests was in part an artifact of a very generous absolute capital 
failure threshold. 
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Further, as some banks can use the standard approach to risk weighting and others an 
internal ratings based approach (IRB),  for purposes of transparacny it is recommended 
that equation (1.2) is used to convert what their actual Tier 1 capital to risk weighted 
assets ratio implies in terms of the absolute Tier 1 capital threshold (denoted by Tc) that 
will determine they are in distress.  As the maximum eigenvalue and the tipping point 
thereof for the financial network is stipulated in relation to an absolute Tier 1 capital 
loss threshold, the conversion into absolute capital loss threshold is essential.  This will 
also help national and global regulatory authorities not to be misled about the stability 
of their financial systems because of very generous absolute capital loss thresholds 
implied in the Tier 1capital ratio to risk weighted assets ratio.  In view of this, the 
Markose-Giansante eigen-pair framework recommends the use of a simple Tier 1 
absolute capital threshold of in the range of between 25% - 30% that the regulator 
thinks is appropriate for a financial network for total liabilities of FIs and for any subset 
thereof a pro rata reduction in the loss threshold is needed.  

1.4  Evidence: Does Any of this Work ? 

We will give two important pieces of evidence that indicate that the eigen-pair method 
based systemic risk metrics give early warning.  The first demonstration came within 18 
months into the RBI project (see, Markose et. al. (2013), circulated at the Fianancial 
Stability Unit and presented at the RBI workshop on the same).   

The following Table 1 tracks the eigenvector centrality (the pink section of Table1)  
which gives the rank order of banks in terms of their systemic risk importance, viz. 
their capacity to bring about loss of capital in their system from the financial contagion 
ensuing from their failure, in the absence of regulatory interventions.  Sudden changes 
in rank order of the centrality metrics at the top end should be taken seriously.  In 2012  
when the eigenvector centralities for top 25 Indian banks was tabulated for the 4 
quarters, it was found that the bank C001, which was ranked substantially lower down 
had in a matter of 6-8 months become the most systemically important bank in India 
From being a mid Tier bank it had jumped to be in the central Tier (shown in yellow 
and green section of Table 1) .  This sudden elevation in terms of systemic importance 
of C001 is comparable to that of HBOS and Northern Rock in the UK.  C001 was 
winning Bank of the Year Awards as it was increasing market share.  An increase in the  
eigenvector centrality of the bank which occupies the most central position in the 
financial  network, as explained in detail in Chapter 5 p. 55 of this handbook and also 
in Markose (2012), occurs as the both the number of its net lender counterparties and 
the liabilities of this bank increase relative to Tier 1 capital of the banks exposed to it.  
In other word, this bank is borrowing aggressively in the inter-bank market.  Further,  
the upper bound of the maximum eigen value, the systemic stability metric, is impacted 
on in an upward direction by increases in the row sum of the  bank ranked 1 in terms 
of eigenvector centrality, viz weighted sum of liabilities relative to capital of the net 
lenders of the most systemically important bank. The higher resultant maximum 
eigenvalue of the financial system also signals that the system can now lose a larger 
percentage of capital of the whole system, if this most systemically important bank is to 
fail.  As the activities of C001 was found to almost double the systemic risk of the 
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Indian banking system,15 action was taken by the Deputy Governor in charge of 
Financial Stability Unit.          

 
Table 1 : Evidence Over 2011 Q1-Q4 period that a Tier 2 Bank C001 jumps to the 
Most Systemically Important Bank (Highest Eigen-vector Central )  

The eigen-pair method being implemented at the RBI, was applied to the only 
publicly available bilateral available data based on the BIS Consolidated Banking 
Statistics. While the case of Greece is marked by the negative capital that the 
country’s big banks suffered since 2011 Q2 (leading to a break in data at this point 
in Figure 10), what is interesting is how the eigen-pair methods yields results for 
the rank order of the vulnerable countries in the periphery of the Eurozone      
(Portugal, Ireland, Italy, Greece and Spain). What is remarkable is that the recent 
vulnerability of the Portugese banking system that  can clearly be seen in late 2013 
using the vulnerability index based on the Markose et. al.  left eigenvector 
centrality metric.  This eventually culminated in the collapse of the major 
Portugese Banco Espirito Santo in August 2014, sparking fears of a second round 

                                                                        

15 C001 was already on the radar of the authorities in 2011, as noted by  Deputy Governor Shyamala 
Gopinath.  The SRA tool of the RBI provides the quantitative evidence of the nature of the systemic risk 
posed by C001.   
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of banking contagion in the Eurozone.  The status of Portugal can be seen in  
Figure 10 where by the end of 2013 Q4, Portugal becomes the most vulnerable 
banking system in the Eurozone. This was not anticipated by other methods of 
analysis such as those given by the IMF. 16The top rank occupied in the left 
eigenvecor by Portugal, makes it the most vulnerable banking system in the 
periphery of the Eurozone. This arises because big Portugese banks have the 
largest net exposures to other banks relative to their own capital buffers.     
 
 

 
Figure 10- Systemic Importance of Debtor Eurozone Countries given by the (rank order of) Right Eigenvector 

(Top Panel and Vunerability of the PIIGS Banking Systems given by Left Eigenvector (Bottom Panel) 

 

1.5 Concluding Remarks and Future Work 

The need for regulators to mandate actual bilateral data on contractual obligations of 
FIs has been emphasized as calibrations and probabilistic measures based on market 
price data add layer upon layer of assumptions that contribute to model risk that 
detract from assessing the stability of the networked financial system and the 
assignment of systemic risk measures to FIs.  The eigen-pair method recommended in 
the SRA App has the advantage that it is based only on extant bilateral contractual 
financial obligations of FIs and their Tier 1 capital and the network topology that is 
implied by the certified bilateral data submissions.      

Given the relative simplicity in the determination of the above systemic risk metrics for 
the financial network representing the appropriate dynamical system for the demise of 
FIs from failing counterparties, the eigen-pair method was applied on the bilateral 
financial data for the Indian interbank market on a quarterly basis from mid-2010 to 
end of 2011. These results were presented in April/September 2012 at the RBI and 
have been reported in Markose et. al (2013).  Remarkably, a situation reminiscent of the 
aggressive borrowing on the interbank, short term money markets, done by UK banks 
that demised in the 2007 crisis was observed.  From mid-2011, an Indian bank that was 
ranked number 5 or 6 in terms of eigenvector centrality in mid-2010 was seen to have 

                                                                        

16 The Financial Times report on 10 August 2014 stated: In contrast with Ireland and Spain, banks were not 
seen as Portugal’s central vulnerability when it agreed to a €78bn bailout by the EU and the International 
Monetary Fund in 2011. In a progress report on the rescue in January, the IMF said “the financial sector 
remains stable” thanks to capital increases in the previous two years, while “adequate provisioning levels are 
being safeguarded through periodical impairment reviews”.  http://www.ft.com/cms/s/0/2965c812-1e29-
11e4-bb68-00144feabdc0.html#axzz3Flz9KbKZ 

http://www.ft.com/cms/s/0/2965c812-1e29-11e4-bb68-00144feabdc0.html#axzz3Flz9KbKZ
http://www.ft.com/cms/s/0/2965c812-1e29-11e4-bb68-00144feabdc0.html#axzz3Flz9KbKZ
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catapulted to the being the bank with the highest eigen-vector centrality within a few 
quarters.  A combination of increased connectivity of the FI and its large liabilities 
relative to the distribution of capital in the system accounts for its dominant eigen-
vector central position.  Clearly, what is rational/profitable for this bank that enabled it 
to increase its loan market share can lead to an adverse loss of stability for the 
interbank system. System wide capital losses from a Furfine type stress test, with this 
bank as the trigger, jumped to 29.4% from more modest levels of 6%-14% in previous 
quarters when other banks were dominant in terms of eigen-vector centrality.  This real 
world exercise shows that it is not sensible to have a priori lists for SIFIs in macro-
prudential policy and sudden jumps in eigen-vector centrality of a bank should give 
cause for concern. 

The results for how a Pigou tax based on the eigen-vector centrality of Indian FIs was 
also reported in Markose et. al (2013). Each FI is taxed according to its right 
eigenvector centrality in order for the FI to internalize the costs that they inflict on 
others by their failure and to mitigate their contribution to network instability as given 
by the maximum eigenvalue. The progressive nature of the tax justifies the moniker 
‘super-spreader’ tax.  The rationale behind the application of the right eigenvector 
centrality of a node as the basis of the Pigou tax is to enable a FI to provide a buffer 
proportional to its own capacity to propagate contagion. 

As the spectral methods for stability analysis permit generalizations across different 
matrices or multi-layer representations of multi-products in the financial system (see 
Markose and Rais Shaghaghi, 2014), it is envisaged that the solvency and liquidity 
contagion analysis can be integrated within amore convenient systemic risk stability 
metric.  Currently, the RBI SRA App can conduct a Furfine style contagion stress test 
where both solvency and liquidity factors play a role. For this considerable work has 
been done in identifying the high quality liquid assets (HQLA) in the Indian financial 
system and also identified contagion channels from liquidity factors. However, a lot 
more work remains to be done on developing  regulatory ratios for HQLA that are 
similar to regulatory  ratios regarding Tier 1 capital that aim at enhancing solvency.  

While some preliminary analysis has been done for the electronically cleared financial 
markets such as the REPO and CBLO, once data collection for this has been done, 
activities of FIs in these markets will be integrated into the multi-sectorial framework.  
The same goes for the granular network models for Indian FIs with the global financial 
markets.   

Finally, the multi-layer framework of networks for the Indian financial system has 

to be embedded into the sector flow of funds for the Indian economy. Following 

the Castren-Racan (2012) ECB work, the software for this has already been 

developed and tried out by Markose and Giansante on the BIS consolidated global 

banking flows which since 2010 give the non-bank real side sectorial break downs 

for 10 Eurozone countries. However, much work remains for adapting this for the 

integration of the much more granular network depiction of the Indian financial 

system with the Indian sectorial flow of funds.    
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Summary of SRA Features 

The main features of SRA are: 

1. Fully integrated network application for digital mapping 
of financial systems. 

2. An intuitive two-step procedure for data import from Comma-Separated Value 
files (CSV). 

3. The SRA database integration allows automated data access. 

4. A statistical package that provides a wide range of information regarding balance 
sheets of FIs, network characteristics of markets, and the identification of 
Systemically Important Financial Institutions (SIFIs). 

5. A financial contagion package with state-of-the-art contagion algorithms for failure 
from solvency and liquidity shocks. 

6. A holistic network visualization package that graphically displays topology of 
networks as well as contagion maps. 

7. An innovative macro-prudential regulation package based on the eigen-pair analysis 
that provides metrics for the stability of networks and also the systemic importance 
of FIs. 

8. A method for stabilization of networks based on the eigen-pair approach which 
determines the tax to be levied on SIFIs for their contribution to the systemic risk 
of the financial network.This can be a notional exercise for the regulator to 
quantify the negative externality posed by a highly eigenvector central FI. 

9. The facility to export all the outcomes either in excels files or as pictures which 
have been produced by the SRA visualization package.  

10. SRA software architecture builds in a multi-layer network framework to access and 
deal with data for different products/markets, viz. bilateral data from multiple 
markets can be loaded and dealt with simultaneously. 
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Figure 10 - The SRA application environment and main components. 

 

The main panels in SRA are shown in Figure 10. Starting from the top left of the 
window, we have 

 The TOP main menu with icons toolbar for a direct access of the different 
operations. 

 The LEFT explorer panel that lists all objects, markets and institutions, which are 
the list of the markets and the institutions.Note institutions are the participating 
financial institutions in a financial market. 

 The MAIN CENTRAL panel displays all the main outputs of the application, in 
particular for the individual objects. 

 The BOTTOM panel gives a progress bars for ongoing operations as well as 
summaries of the generated outputs. 

 

The External Libraries 

SRA makes use of the following third-party libraries for both graphical and 
computational tasks: 

 The Eclipse Rich Client Platform that constitutes the skeleton and visual panels of 
the entire application (http://wiki.eclipse.org/index.php/Rich_Client_Platform). 

http://wiki.eclipse.org/index.php/Rich_Client_Platform
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 Colt libraries for high performance scientific and technical computing in Java 
(http://acs.lbl.gov/software/colt/). 

 JFreeChart library for professional quality charts 
(http://www.jfree.org/jfreechart/). 

 The Java Universal Network/Graph Framework library for modeling, analyzing 
and visualization of data as graph of network (http://jung.sourceforge.net/). 

 MySQL connector/J for the JDBC drivers for MySQL in JAVA 
(http://dev.mysql.com/downloads/connector/j/). 

 

 

http://acs.lbl.gov/software/colt/
http://www.jfree.org/jfreechart/
http://jung.sourceforge.net/
http://dev.mysql.com/downloads/connector/j/
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Data Import 
Import financial data in SRA manually or via an automated 
database connection 

etting started on SRA requires, as first step, knowledge on how to prepare 
your financial data in order to import them into SRA. This chapter provides 
a basic two-step manual import facility based on standard comma-separated 
value input files as well as a more sophisticated database connectivity for 

large scale financial data. 

 

Manual Import 

The manual import is a basic two-step approach consisting of 
two main csv data files to be loaded into SRA: market data 
andinstitutions data files. 

Market Data 

The market data file must be constructed as a (𝑁 + 1) × (𝑁 + 1) matrix where 𝑁 
represents the number of institutions participating in the market. The first column and 
row are dedicated to row and columns headers, respectively. 

Note 

SRA interprets market matrices as LIABILITY FLOWS from the row 
institutions (guarantors/borrowers) to the column institutions 
(guarantees/lenders). 

In financial networks nodes stand for financial entities such as banks, other FIs, and 
their non-financial customers or end users. The edges or connective links represent 

contractual flows between two financial entities. Let 𝑖 and 𝑗 be two institutions. When 

a direct link originates with 𝑖 and ends with 𝑗, viz. an out degree for 𝑖, it represents 

financial outflows or payables for which 𝑖 is the guarantor. A link from 𝑗 to 𝑖 yields an 

in degree for 𝑖 and represents cash inflows or financial receivables for 𝑖 from𝑗. 
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Figure 11 shows an example of the csv file loaded in Microsoft Excel. Names of 
institutions MUST be in the same sequence in the row and column headers. 

 

 

Figure 11 – Market data csv input file for GROSS bilateral obligations. Institutions name are labeled A001 to A009. 

Important 

All entries in the csv files must be non-negative and represent GROSS 
values. No cells should be empty or have values (delete filled) filled 
outside the perimeter of the matrix. 

Once the file is ready, it can be easily imported by selecting the Markets tab in the 

explorer panel (See Figure 10) and then clicking the  button as displayed in Figure 
12. A pop-up window will allow the user to browse for market data csv files. Each 
market data file is market and time specific. For example, the user can upload csv files 
for the same market for different dates or different markets at the same date. The 
markets will then be listed in the Markets list. SRA allows you to load as many markets 
as you want, as long as they are consistent with the same list of institutions. 

 

Figure 12 – The TOP LEFT hand side of the main toolbar. 
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Institutions data 

The institution data must be constructed as a (𝑁 + 1) × 𝑍 matrix where 𝑁 represents 

the number of institutions participating in the market and 𝑍 the characteristics of each 
institution. The first row is dedicated to columns headers. In the current version of the 
SRA app, the 2.0.1 beta, the required institutions column variables are the following: 

A. Name 

B. Total Assets 

C. Total Borrowing 

D. Liquidity Buffer 

E. Capital Buffer 

F. Risk Weighted Assets 

G. Min Capital/RWA 

H. Group Id 

I. Group Name 

 

Figure 13 - Institutions data csv input file. Institutions name are labeled A001 to A009. 

Note 

If data for the column variables is not available, viz they are not used for 
the analysis. The default value should be 1 

The interpretation of the first six variables is straightforward. The “Min Cap/RWA” 
represents the minimum regulatory requirement of capital buffer over risk-weighted 
assets for the selected institution to be solvent (in the example in Figure 13 we define a 

6% threshold). A detailed explanation for the use of the above variables will be given 
in the following Chapters. The last two variables define grouping characteristics (non-
negative id and the name of the group respectively) of each institution, for example the 
type (bank, insurance company, etc.). In column H institutions with a unique group id 
(using numbers from 0 onwards) will be grouped together in the network analysis. 
Group Id “-1”is used ifno grouping is required. 
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Important 

The order of the institutions in the Institutions data csv list MUST be 
identical to the one in the market data file 

To import the institution data file, click the button  (in Figure 12) to access browser. 
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Network Analysis 
Network Analysis 

his Chapter introduces the statistical properties of the networks that are loaded 
into SRA according to the instructions in Chapter 2. This facility allows the 
user to assess the main network and nodes statistics as well as a simple way of 
personalizing the graphical visualization of the network.  

 

Objects Inspector 

The list of objects loaded in SRA is displayed in the package 
explorer (LEFT panel in Figure 10). The user can inspect any 
object by double-clicking on a selected item. A new view 
window will be shown in the main central panel with the 

individual properties of either the institution (represented by the icon ) or the market 

selected (represented by the icon ). 

 

Market Properties 

The Inspect Market  view provides a detailed probe of the structure of the market. It is 
made up of two main sections: Details and Data Statistics.  

Important 

The Inspect Market is only available when a market object is selected 
from the explorer panel. 

 

Market Headlines 

Market headline provides a general overview of the macro information of the market, 
such as number of participants, total gross and net liabilities, etc.  
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Figure 14 - Market Headlines 

Data Statistics 

Data Statisticscontainstwo main tables: Market Data Statistics, Node Statistics and 
Network Statistics. 

 

Figure 15 - Market Data Statistics 

Market Data Statistics 

Market Data Statistics shows statistics of the market data loaded as input file (see 
Chapter 2), such as institution type, tot payables and receivables (both in absolute and 
% values giving market share of total payables and receivables respectively), amount of 
liquid assets, core Tier 1 Capital (T1) and risk weighted assets (RWA) along with the T1 
ratio calculated as the ratio between T1 capital and RWA. 

 

Figure 16 - Node Statistics 
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Node Statistics 

Key to the network topology is the bilateral relations between agents and is given by 

the adjacency matrix 𝑨 = (𝑎𝑖𝑗)
𝐼
where Iis the indicator function with 𝑎𝑖𝑗 = 1 if a 

directed link from i to j exists, 0 otherwise. We can define here the GROSS liability 

matrix X such that 𝑥𝑖𝑗 represents the flow of gross obligations from i to j. The total 

gross payables fornodei is the sum over j columns (or counterparties), 𝐺𝑖 = ∑ 𝑥𝑖𝑗𝑗  

while the total gross receivables for i is the sum over i rows 𝐵𝑖 = ∑ 𝑥𝑖𝑗𝑖 . We also 

define the NET liability matrix M with entries 𝑚𝑖𝑗 = (𝑥𝑖𝑗 − 𝑥𝑗𝑖) representing the 

bilateral net payables of i vis-á-vis j. Note the matrix M is skew symmetric with entries 

𝑚𝑖𝑗 = −𝑚𝑗𝑖. To analyse the dynamics of the cascade of failure of the ith FI on the jth 

one, the matrix that is relevant will only contain the positive elements of the M matrix, 
named M+. 

Node Statistics in SRA provides node statistics of the participant of the GROSS 
networkX, such as: 

 k in and out: in and out degree for each Institution 

𝑘𝑗
𝑖𝑛 = ∑ 𝑎𝑖𝑗𝑖 ; 𝑘𝑖

𝑜𝑢𝑡 = ∑ 𝑎𝑖𝑗𝑗    (3.1) 

 Conn in and out: individual in and out connectivity, calculated as follows 

𝐶𝑜𝑛𝑛𝑖
𝑖𝑛/𝑜𝑢𝑡

=
𝑘𝑖

𝑖𝑛/𝑜𝑢𝑡

𝑁−1
  (3.2) 

 

 CC: individual cluster coefficient according to the equation 3.3. 

𝐶𝐶𝑖 =
𝐸𝑖

𝑘𝑖(𝑘𝑖−1)
.   (3.3) 

Eidenotes the actual number of links between agent i’s ki neighbors, viz. those of 
i’s kineighbors who are also neighbors. 

 SP: average shortest path of the selected node vis-a-visits neighbors. 

 Unw EVC: unweighted eigen vector centralitycalculated as the eigen vector of the 
largest eigen value of the adjacency matrix A. 
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Network Statistics 

Network Statistics provides main network properties of the market that are listed 
below: 

 K in and out: number of in-degrees and out-degrees of the network, which 
represents the amount of bilateral assets and liabilities respectively; 

 Conn in and out: connectivity of the network for in and out degrees respectively 
calculated as follows: 

𝐶𝑜𝑛𝑛𝑖
𝑖𝑛/𝑜𝑢𝑡

=
∑ 𝑘𝑖

𝑖𝑛/𝑜𝑢𝑡
𝑖

𝑁(𝑁−1)
  (3.4) 

 CC: cluster coefficient of the network, calculated as follows: 

𝐶𝐶 =
∑ 𝐶𝐶𝑖𝑖

𝑁
    (3.5) 

 

 

Network Visualizer 

The network visualizer can be accessed from the main menu “Networks Plot”. It 
provides the facility to visualize both GROSS (X matrix) and NET (M+) networks.  

Circle Layout 

SRA employs a basic Circle layout, where nodes are placed in circle fashion, as 
described inFigure 17. 
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Figure 17 - Circle layout 

Tiering layout 

A dedicated network layout called Tiering layout, has been specifically designed to 
capture tiering structures in the financial network as shown inFigure 18. 

 

Figure 18 – Tiering layout of interbank market in Inda 
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The layout takes the range of connectivity of all nodes as a ratio of each node’s in and 
out links divided by that of the most connected node. Nodes that are ranked in the top 
10 percentile of this ratio constitute the inner core.  This is followed by a mid-core 
between 90 and 70 percentile and a 3rd tier between 40 and 70 percentile.  Those with 
connectivity ratio less than 40% arecategorized as the periphery.  Nodes in the 
periphery are typically not connected to one another. The percentiles can also be 
personalized with custom ranges to be specified in the bottom area of the plot. The 
button UPDATE will refresh the plot with the customized percentiles. 

Tiering Group Layout 

In this facility the group id plays a role. The institutions with id “-1” automatically 
occupy the center tiering structure while non “-1” institutions will appear on the top 
with different shaped icons as inFigure 19. 

. 

 

Figure 19 - Group tiering layout 

InFigure 19, banks are given central status (because they were assigned id “-1”) while 
non banks appears in an aggregated form on the top (top central group is Insurance 
Companies (G node), Mutual Funds (F node), etc…). 
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Figure 20 - individual grouping 

Figure 20can be achieved by using the tiering layout and the user can manually pick and 
move as in this case the non bank institutions to location of their choice. For example 
top left are triangles are (H nodes) Insurance companies, all net lenders except H21; 
Bottom left Diamonds areUrban and Cooperative Banks. 

Important 

Only institutions with a specified group id ≠ -1 can be placed on top. The 
remaining institutions with group id = -1 will be kept in the center tiering 
layout. 

 

Personalizing network plot 

The links from a node are out-degrees and depict borrowing.  The links are weighted 
and the thicker the links, the larger the size of their obligations. The links are colour 
coded in the tiered layout,Figure 18.  Nodes are colour coder red if they have net 
payables and blue if they have net receivables as in Figure 18. For example, the yellow 
links show where the second tier (mid core) banks are borrowing from.   
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Figure 21 - Networ plot zoom-in functionality 

Basic functionalities are  

 Zoom-in and zoom-out (that is also available by using the mouse scroll wheel), 

 Transforming and picking to move the whole network or a single node 
respectively and  

 Reset button to reset the layout to the default state are placed at the top of the 
plot.  

 Node sizecan be determined by criteria given by drop-down menu (according 
to total borrowing, capital, net positions, etc. of each node)  
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Figure 22 - Network Plot Drop Down Menu of Node Size 

 Non-default tiering criteria. By default, the total connectivity is used. However, 
the user can personalize it by selecting a different criterion, such only in or out 
degree, EVC and so on. 

 

Figure 23 - Network Plot Drop Down Menu of Tiering Criteri
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Contagion Stress Test 
Contagion Algorithms and Stress Test Analysis of  Financial 
Networks 

ontagion analysisis an important and well established procedure to assess 
systemic risk in financial markets. SRA employs a sophisticated contagion 
algorithm implementing solvency and liquidity constraints andprovides a 
detailed analysis of loss propagationamong financial institutions 

interconnected by balance sheet and off balance sheet linkages.  

 

Introduction 

Due to a FI’s balance sheet and off balance sheet inter-linkages with those of other FIs,  
FIs suffer the following type of risks : 

(i) Counterparty risk arises when financial counterparties fail and default on 
obligations.  Failure ofcounterparty can affect both liquidity and solvency of a 
financial entity.  The failure of debtors to repay can threaten the solvency of 
lenders while failure of lenders or holders of contingent claims can mean that 
their counterparties are short of funds to make their own payments.   

(ii) Direct credit risk of credit instruments occurs when the issuer defaults. This 
may be aggravated as counterparty risk when solvency of guarantoris 
correlated with the credit risk of the underlying credit instruments. 

(iii) Credit risk of non –financial debtors arising from their default, and 

(iv) Market and funding liquidity risk. 

Finally,   

(v) there is market risk on the valuation of balance sheet securities.   

Market liquidity risk refers to the loss of value of assets sold under conditions of fire 
sales.  Funding liquidity risk, in addition to failure of lenders in the system ((i) above),  
can  arise when  (a) lenders do not roll over loans in repo, (b) prime brokers pull the 

Chapter 

4 

C 

I C O N  K E Y  

 Run contagion 

 Contagion results 

 Inspect contagion 



C O N T A G I O N  

48 

 

plug, (c) in secured or collateral based loans, collateral loses value , and (d) the repo 
rate/haircut increases.   Finally, the close link between liquidity and solvency arises 
from the fact that factors (i- v above) that cause asset quality deterioration will also 
reduce the quantity of liquid funds that the financial institution can raise.   

SRA models the credit and counterparty risk from failure of debtors or derivatives 
sellers on net liabilities between FIs.  Liquidity shocks are however modeled in gross 
flow terms as the bankruptcy laws implies that counterparties of failed FIs continue to 
fulfill their obligations in gross values.  

The criterion of bank failure as a result of illiquidity is harder to identify than in the case 
of solvency.  Unlike the Tier 1 capital which is a clear cut benchmark against which 
solvency criteria can be defined, a FI’s available high quality liquid funds are harder to 
identify.  In what follows, RBI regulators specify the instruments that can be called in 
when there is a liquidity shortfall. Market liquidity risk requires additional modeling of 
the market price impact functions in relevant secondary markets from fire sales of 
assets.  The algorithm developed for SRA combines both solvency and liquidity 
channels.  The mathematics underpinning the algorithm is given in the next section. 

 

Contagion view in SRA 

By clicking on the contagion button  a pop-up window shows the options the user 
can choose.  

 

Figure 24 - pop-up window for contagion options 

First of all, a name has to be specified to refer to that contagion run, for example “run 
1” of “banks only solvency”. Second, the user is free to choose solvency only, liquidity 
only or both solvency and liquidity contagion runs by ticking in the drop-down menu. 
Features can be attributed to each market loaded in SRA, such as: 

 SOLVENCY: by ticking this option for the selected market(s) solvency contagion 
analysis will be conducted as described in equations (4.2) and (4.3) below. 
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 LIQUIDITY: by ticking this option, the market(s) that will be included for the 
propagation of liquidity shocks have to be selected. In this case, additional 
information must be provided, such as: 

o CALLABLE: assets in this market can be called in in case of liquidity 
shortage according to equations 4.5 in the secondary liquidation. 

o NOT CALLABLE: assetsto be considered in primary liquidation 
only. 

o NO CONTAGION:specify nodes in the bilateral matrix that are 
assumed not to fail. 

Figure 248provides an example of the contagion set up explained above. 

 

 

Contagion Visualization 

 

Multi-run Contagion Results 

Once the contagion algorithm is run, the results are presented in a contagion view . 
The contagion results table reports, for each trigger, aggregated losses in terms of 
capital (for solvency shocks) and liquidity (for liquidity shocks). These  are presented in 
both absolute and percentage values of total capital and liquidity respectively. 

 

Figure 25– Multi-run Contagion Table (Result for all FIs as ‘Triggers’ is given) 

Number of defaulted banks at the end of each contagion event is presented (column 
DB) as well as a description of those whom finally fail due to solvency losses (DBS) 
and liquidity shortfalls (BDL). 

 

Inspecting an individual contagion event 

By clicking on one of the rows in the contagion view  table the user can inspect that 

specific event. An individual contagion view provides additional information about 
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that event. In particular, a contagion plot describes the sequence of failures of direct 
and indirect counterparties of the trigger FI.  

 

Figure 26 - Contagion plot with both solvency and liquidity shocks 

The contagion propagation from failure of a 'trigger' institution (center most black 
node in Figure 26) is displayed in terms of direct failures (black nodes) placed on the 
first concentric circle, the second order failures are on the circles beyond. The 
concentric circles denote the sequence of failure specified in the next Section. The 
contagion halts when no further bank failures follow.  The color coding in Figure 
26shows the fragility of institutions approachingthe defaulting threshold.  The light 
green nodes represents healthy institutions, those that are yellow are more fragile and 
close to default while the black nodes have failed. The red nodes specify the 
institutions that fail because of liquidity problems.Below red triangle is given instead of 
red circle. 
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Simultaneous multiple viewing of contagion plots 

 

 

Figure 27 - Simultaneous multiple viewing of contagion plots for different Trigger FIs. 

 

Contagion algorithm 

The algorithm starts at q=0 and the trigger bank that fails is denoted by h. 

Assume at iteration q, the set of banks that have demised is denoted by Dq .     

Thus, h Dqare the FIs that have failed at q.                                               

The set of financial institutions (FIs) that fail at q+1 will be denoted by Dq+1.Note that 

banks that fail at q+1 are those that fail from direct solvency shocks Sq+1 and those 

that fail from liquidity shocks 𝑳𝑞+1
𝑇 . 

Dq+1 = Dq∪Sq+1∪ 𝑳𝑞+1
𝑇 .   (4.1) 

As primary and secondary liquidation can occur in the course of a liquidity contagion 

event, the superscript T in 𝑳𝑞+1
𝑇  specifies the end of secondary liquidations.  
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Note 

Note the set ∪𝑞 𝐷𝑞 the set of all FIs that have demised at all q including 

q. Note, in what follows, the subscript s denotes the set of all 
markets/products.   Of the full set of products only a subset s is 
considered to be callable in the course of a liquidity shockas specified in 
the drop-down menu inFigure 24. 

 

Solvency shocks 

Non-failed FIs at q will be considered to fail at q+1 if the followingsolvency based 
failure condition holds.  For a given FI,the unit value for the indicator function fi 
signals failure: 

           fi#(wi)=   1     if       wi  =   (  s∑
𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖−𝑚ℎ𝑖

𝑠+

𝑅𝑊𝐴𝑖
−  𝜌) > 0ℎ𝜖𝐷𝑞

(4.2) 

 

Here, i# denotes those non-failed counterparties (viz. i*∪𝑞 𝐷𝑞) who fail at q+1 from 

the above solvency condition.  Note, 𝑚ℎ𝑖
𝑠+is the netted liabilities between h and i for 

the sth financial sector/product.  Thus, the condition in (4.2) states that the ratio of its 
Capital less net liabilities of failed counterparties of i at q with RWA of i exceeds certain 

𝜌 threshold. 

We define a new set of failed FIs who demise from the solvency condition (4.2)  

Sq+1 = ( i
#
| (4.2) holds )  .                                             (4.3) 

Note those i#𝜖Sq+1  having failed in the q to q+1 cycle are only unwound at the end of 
q+1.  Note in what follows the superscript # denotes failed FIs and superscript * 
denotes those that have survived. 

 

Liquidity shocks 

Failed FIs at q impart liquidity shocks in the following way: 

 Primary Liquidity Shock: In a primary liquidity shock, all the failed banks h 
withdraw all loans to counterparties from all sectors.  This will also been called the 

final ‘winding up’ which occurs only once at q for banks that failed at q, i.e. h∈ 𝐷𝑞.     

 Secondary Liquidity Shock: A secondary liquidity shock applies to loans callable 
only from the subset s of loans and these are done by financial institutions who 
survive the direct liquidity shock by calling in loans from other banks that have 
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survived beyond q but exclude i#from eq. 4.2, 4.3.   We impose the condition that 
for loans called in between surviving FIs, only net lenders can do so. Surviving net 
lender is limited to call in loans only once from the same counterparty.   

In a liquidity contagion, the criteria that is first checked is which FIs need to call in 

loans at initial point =0 and this is defined in (4.4). Here, the indicator function 

denotes failure of i*cwho fails despite calling in loans at =0in the face of failure of 
lenders at q.LBi is the liquidity buffer of i*. 

f i#
c

(wi*) = 1 

if  wi
*
 =  ∑ ∑ 𝑋𝑖∗𝑗#

𝑠   −  (𝐿𝐵𝑖∗𝑗# ∈𝑫𝑞𝑠 +  ∑ ∑ 𝐶𝑎𝑙𝑙𝑥∗𝑖∗∪𝑞 𝐷𝑞 ∪ 𝑆𝑞+1

𝑠∗
𝑥∗ )𝑠∗ > 0   

                                                                                                                     (4.4)   
 

A superscript c denotes variables pertaining to those FIs who need to call in funds.  
This depends on whether their initial liquidity buffers (LB) are breached. Such FIs that 

call in loans are denoted by i*c.  Here i*
=0

are the initial non failed FIs from (4.2) and 

(4.3), i
*
∪𝑞 𝐷𝑞  ∪  𝑆𝑞+1. 

The terms ∑ ∑ 𝑋𝑖∗𝑗#
𝑠

𝑗# ∈𝑫𝑞𝑠 denotes the loans called in by j
#
 who are lenders to i

*
 

and who have demised at q.  The term, ∑ ∑ 𝐶𝑎𝑙𝑙𝑥∗𝑖∗∪𝑞 𝐷𝑞 ∪ 𝑆𝑞+1

𝑠∗
𝑥∗𝑠∗ in the 

brackets in (4.4), contains the value of loans called in by i
*
 from counterparties 

x
*
  who have survived and to whom i

*
 is a net lender. 

 

Note 

The contagion from the liquidation process entails a sequence of 
subroutines within the (q, q+1) interval with the subroutines for 

secondary liquidation denoted by =0, 1,2, …. , .   

The general condition for failure from liquidity contagion at 1 is given by: 

 

f i#
c

(wi*) = 1  if: 

 

𝑤𝑖
∗ =

((∑ ∑ 𝑋𝑖∗𝑗#
𝑠 + ∑ ∑ 𝑋𝑖∗𝑗∗𝑐

𝑠∗ ) 𝑗∗𝑐∈𝑳𝒒+𝟏
𝒄𝝉−𝟏𝑠∗ − (𝐿𝐵𝑖∗ +ℎ# ∈𝐷𝑞𝑠

∑ ∑ 𝐶𝑎𝑙𝑙
𝑥∗𝑖∗𝑳𝒒+𝟏

𝝉−𝟏 ∪𝑞 𝐷𝑞

𝑠∗
𝑥∗𝑠∗ ) ) > 0       (4.5) 

 

i
#c

are those who fail due to condition in (4.5) at . The term  

∑ ∑ 𝐶𝑎𝑙𝑙
𝑥∗𝑖∗ 𝑳𝒒+𝟏

𝝉−𝟏 ∪𝑞 𝐷𝑞

𝑠∗
𝑥∗𝑠∗ in (4.5) gives the amounts that i*c succeeds in calling in 

from counterparties to which it is a net lender.   On the other hand, the term    
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∑ ∑ 𝑋𝑖∗𝑗∗𝑐
𝑠∗

 𝑗∗𝑐∈𝑳𝒒+𝟏
𝒄𝝉−𝟏𝑠∗  in (4.5) with j*c refers to surviving banks at -1 who are net 

lenders to i*c who need to call in loans.   

At each , we have new sets of FIs that fail due to the criterion in (4.5) and this is 
defined by 

𝑳𝒒+𝟏
𝑻 = ( i#

c
| (4.5) holds )  with   𝑳𝒒+𝟏

𝝉=𝟎    =  ∅  .         (4.6)      

 
The final subroutine T marks the point at which no further FI fails due to secondary 

liquidity contagion and it defines the set𝑳𝒒+𝟏
𝑻 which contains all FIs that fail due to the 

secondary shocks from that arise from certain loans being called in by distressed 

FIs.  We denote by 𝑳𝒒+𝟏
𝒄 the set of those non-failed FIs that call in loans at . 

To summarize, in a liquidity contagion, the calling in of loans by surviving banks may 
trigger further failure by the condition in (4.5) and note, we follow the criteria that 
surviving banks can only call in net amounts for which they are net lenders and they 
can do this only once with respect to a counterparty. 

This process terminates at the point = T when no more FIs fail from condition (4.5). 

Thus:  𝑳𝒒+𝟏
𝑻 , i

#
no further FIs fail from condition (4.5).    

 

Important 

Analogous to the Furfine algorithm that holds only for contagion from 

the solvency condition in (4.1) , the algorithm that combines  failures 

of FIs from solvency and liquidity shocks update the set of number of 

failed banks at q+1 to be 

Dq+1 = Dq∪Sq+1∪ 𝑳𝒒+𝟏
𝑻 . 

 

The diagram inFigure 28graphically describes the routines of the contagion algorithm 
according to the analytical description presented above. 
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Figure 28- Contagion diagram 
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Stability Analysis 
Metrics for Financial Network Stability and Identifications of  
SIFIs. 

n the design of macro prudential policy for monitoring and managing systemic 
risk, it is important to know whether the financial network is becoming more or 
less stable relative to the capital in the system and also who are most instrumental 
in causing the instability.  This Chapter discusses the implementation of the eigen-

pair approach first proposed in Markose (2012) into SRA. The methodology 
simultaneously derives two metrics, one for the stability of the financial network and 
the other for the systemic importance of FIs in the network. The need to design a 
Pigou tax to control systemic risk from SIFIs and to have them internalize this cost has 
come to the forefront after extensive tax payer bail outs in the aftermath of the 2007 
financial crisis. 

Introduction 

The exclusive focus in Basel I and II on managing risk and stress tests relating to how a 
bank’s activities affect its individual chances of failure, with no consideration as to how 
individual-level choices affect system wide tail risks, is now acknowledged to have been 
flawed, Haldane (2009.a).  Macro-prudential policy (Carauna, 2010, Clement,2010) is 
concerned with monitoring and managing systemic risks that arise from monetary and 
financial sector activities that have negative externalities that can spread cross-
sectionally, or build up over time as in asset bubbles. These have spillovers into the real 
side of the economy.  

Operationalizing systemic risk monitoring and management of FIs, at a minimum, 
needs to address the following: Is there a metric that can identify if financial 
intermediation is growing more unstable relative to Tier 1 capital in the system?  Which 
FIs contribute to this instability and how does the failure of a FI result in domino 
losses in the ensuing financial contagion? How can a Pigou tax be shown to mitigate a 
FI’s negative externality?  Indeed, the efficacy of a systemic risk framework lies in 
whether it can help detect potential threats reminiscent of the AIG or Northern Rock 
debacle, viz. a combination of excessive buildup of liabilities with growing 
interconnectedness with counterparties.  These FIs in pursuit of privately rational 
objectives of increasing market share and short term profits by aggressively borrowing 
in the interbank market and taking on large derivatives liabilities positions, respectively, 
became potential threats to the system.  

Chapter 

5 

I 
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Steps are now underway to design ‘bail in’ arrangements at the time of failure of FIs as 
part of resolution procedures (see, Heurtas, 2011, Dewatriport and Freixas, 2010, FSB 
November 2012 Report on Resolution of SIFIs) and those that are paid for by FIs 
before failure to alleviate unacceptable socialization of losses from them. SRA 
implements the eigen-pair methodology in which the instability of the financial 
network is measured in terms of the maximum eigenvalue of a specially constructed 
matrix of financial obligation relative to tier 1 capital. There is cause for concern for the 
regulator if the maximum eigenvalue of this matrix is greater that a common threshold 
of Tier 1 capital that determines the insolvency of FIs.  The corresponding eigenvector 
centrality of the FIs in this matrix determines the rank order of the FIs contributing to 
the instability of the network.   

 

Eigen Pair Analysis 

The causal direction of the contagion and hence systemic risk of a FI, follows from the 
‘trigger’ FI, i, owing its counterparty j more than what j owes i, relative to j’s Tier1 
capital.  This is denoted by the positive entries (xij - xji)+/ Cj0  in matrix (5.1)  for those 
pairs of FIs which have a direct financial links.   Here, Cj0  is j’s initial capital.  Hence, 
the matrix Θ that is crucial for the contagion analysis will have elements given as 
follows: 
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(5.1) 

Failure of a FI is usually determined by the criteria that losses exceed a predetermined 

buffer ratio, , of Tier 1 capital.  In the epidemiology literature, Wang et. al. (2003),  is 

the common cure rate and (1 - ) is the rate of not surviving in the worst case scenario.  
The dynamics relating to the probability of failure of each ith FI at a given time step 
q+1 denoted by uiq+1, given j counterparties of i have failed at the previous time step q.  
This is determined by: 



S T A B I L I T Y  A N A L Y S I S  

 

58 

(i) i’s own survival probability given by the capital Ciq it has remaining at q relative 
to initial capital Ci0 . 

(ii) The sum of  ‘infection rates’  defined by the sum of net liabilities of its j failed 

counterparties relative to its own capital is given by the term ∑
(𝑥𝑗𝑖−𝑥𝑖𝑗)

𝐶𝑖0

+

𝑗 .    

Note 

The ‘infection rate’ or how counterparties impact on an FI is pair 

wise heterogeneous. 

 

RWA loss vs Absolute Capital Loss 

The criteria of failure of a bank in the contagion analysis is based on the Basel rule that 

(𝑇𝑖𝑒𝑟 1 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 –  𝐿𝑜𝑠𝑠)/ 𝑅𝑊𝐴 <  0.06 =  𝑇𝑅𝑊𝐴 

Here the threshold for bank failure in terms of RWA is denoted as TRWA.   However, as 
the practical aspects of insolvency requires recapitalization, it is important to see the 
equivalence of the above Basel rule with anabsolute Tier 1 capital threshold criteria (Tc) 
for failure, which is given below for the case where the 6% TRWA  constraint holds: 

𝑇𝑐     =    1 −  𝑇𝑅𝑊𝐴
𝑅𝑊𝐴

𝑇𝑖𝑒𝑟 1 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 
. 

 

The dynamical system 

The dynamics characterizing transmission of ‘infection’ in a financial network system 
can be given by 

uiq+1 = (1 - ) uiq+ ∑
(𝑥𝑗𝑖−𝑥𝑖𝑗)

𝐶𝑖0

+

𝑢𝑗𝑞
1

𝑗 .               (5.2) 

 

Here, we have a FI’s own metric of failure at q which is given by  uiq= (1- Ciq/Ci0 ), 
where Ciq/Ci0  is the ratio of i’s capital at q and capital at initial date.  The second term 
in (5.2) involves the losses from counterparties, j, that fail at q and these are denoted by 

the indicator function 𝑢𝑗𝑞
1 which is set equal to 1 if counterparty j fails.   The sum of  

‘infection rates’ is defined by the sum of net liabilities of its j failed counterparties 

relative to its own capital is given by the term ∑
(𝑥𝑗𝑖−𝑥𝑖𝑗)

𝐶𝑖0

+

𝑗 .  In matrix notation, (5.2) 

yields to  

Uq +1= [(1 - )I  + Θ´]Uq = QUq .     (5.3) 
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Here, Θ´ is the transpose of the matrix in (5.1) with each element Θ ij́ = Θ ji and I is 
the identity matrix. 

 

Eigen Vector Centrality 

The network centrality measure that has been found by us to correlate best with the 
capacity of a FI to cause the largest contagion losses on others in the Furfine (2003) 
type stress test is its right eigenvector centrality statistic obtained for matrix Θ in (5.1).  
The algorithm that determines it assigns relative centrality scores to all nodes in the 
network based on the principle that connections to high-scoring nodes contribute 
more to the score of the node in question than equal connections to low-scoring 

nodes.  Denoting 𝑣̃𝑖as the right eigenvector centrality for the ith node for matrix Θ, the 
centrality score is proportional to the sum of the centrality scores of all nodes to which 
it is connected (i.e., ki  neighbours). Hence, 

𝑣̃𝑖  =

1

𝜆
∑ 𝜃𝑖𝑗𝑣̃𝑗 .𝑗 (5.4) 

For the centrality measure in (5.4), the largest eigenvalue, λmax , and its associated 
eigenvector are taken. The  ith component of this eigenvector then gives the centrality 
score of the ith node in the network. Using vector notation, the eigenvalue equation for 

the matrix in (5.1) for the eigen-pair (λmax, 𝒗𝟏̃) is given as: 

𝒗𝟏̃ = λmax 𝒗𝟏̃. (5.5a) 

Note that for a non-negative matrix in (5.1) with real entries, λmax is a real 

positive number and the right eigenvector𝒗𝟏̃ associated with the largest eigenvalue 

has non-negative components by the Perron-Frobenius theorem (see Meyer, 2000, 

Chapter 8).Positive values for the centralities of all nodes of matrix in (5.1) are 

guaranteed by Perron-Frobenius theorem only if in (5.2) is irreducible.17For 

matrix  clearly, given equation (5.5a), those nodes in the periphery with no out-

degrees will have zero eigenvector centrality. 

Finally, from the perspective of the measure of systemic risk, the so called right 

eigenvector of matrix given above in (5.5a), as will be discussed, is what matters. 

A FI’s systemic risk index will be based on this. It measures the impact of an FI’s 

total liabilities relative to the respective capital of each of its counterparties given 

by the row sums of matrix in (5.1) on the stability of the system characterized 

                                                                        

17 The condition of the Perron-Frobenius theorem that guarantees a positive eigenvector corresponding to the 

maximum eigenvalue for the non-negative matrix  is that the directed graph it represents should be 

irreducible.That is, for any randomly selected pairs of nodes (i,j) there is a path between them, viz.  is 
strongly connected, Meyer (2000). 



S T A B I L I T Y  A N A L Y S I S  

 

60 

by the maximum eigenvalue. The so-called dual left eigenvector, on the other 

hand, gives the impact of the exposures of each FI to others and hence can be 

seen to yield vulnerability indices. The left eigenvector of denoted by v1 is 

defined as  

v1 = ´v1= λmaxv1.  (5.5b) 

 

Note 

The left and right eigenvectors using the respective eigen value 

equations in (5.5a) and (5.5b) yield the same maximum eigenvalue 

for the matrix Θ in (5.1). 

 

System stability 

The system stability of (5.3) will be evaluated on the basis of the power iteration of the 

matrix Q=[(1-)I+Θ´].  From (5.3), Uq takes the form: 

Uq=  Qq U0.     (5.6) 

Markose (2012) shows how the stability of the system in (5.6) as q tends to infinity, 

requires that the maximum eigen-value, max, is less than the common threshold on 

capital, . 

max(Θ´)  <    (5.7) 

If this condition is violated, any initial perturbation/negative shock, in the absence 

of outside interventions, can propagate through the networked system as a whole 

and cause system failure.     

What is important to note, as discussed in Markose (2012), is how the power 

iteration algorithm yields a simple relationship between the upper bound of max  

and the maximum row (column) sum18  of the matrix Θ´ (Θ in (5.1)).   

Hence, FIs with high connectivity to a large number of counterparties and also 

have large liabilities relative to capital of their respective counterparties contribute 

                                                                        

18 Denoting the row sum of the ith row of Θ´bySi = ∑ 𝑗𝑖𝑗 ,    max≤maxSi .  
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to the high row sum values for matrix Θ and the largest of these constitutes the 

upper bound of max. 

Pigou Tax 

The aim of the super-spreader tax is to have FIs with high right eigenvector 

centrality parameters to internalize the costs that they can inflict on others by their 

failure and to mitigate their impact on the system by reducing their contribution to 

network instability as given by max.  As discussed, critical to the von-Mises power 

iteration algorithm for the calculation of maxare the row sums Siof the ith row in 

´:  

 

Si= ∑ 𝜃𝑗𝑖𝑗 =
1

𝐶𝑖
∑ (𝑥𝑗𝑖𝑗 − 𝑥𝑖𝑗)+.                        (5.8) 

 

A new row sum Si
# is created for each node so that a super-spreader tax denoted 

by (𝑣̃𝑖 )is applied on the ith node in proportion to its right eigenvector centrality 

𝑣̃𝑖that is a measure of its systemic risk:
19

 

 

Si
# = ∑ 𝜃𝑗𝑖#𝑗 =  ∑ [

1

𝐶𝑖
(𝑥𝑗𝑖𝑗 − 𝑥𝑖𝑗)+ − (𝑣̃𝑖) ].       (5.9) 

 

Note the elements in the square bracket in (5.9) are restricted to be non-negative 

with negative numbers set equal to zero.   The rationale behind this application of 

the right eigenvector centrality of a node as the basis of the super-spreader tax is 

to enable a node to provide a buffer proportional to its own capacity to propagate 

contagion.  Note that the funds that will be escrowed here using (𝑣̃𝑖 ) is not 

calibrated to mitigate failure of FI i due to its exposures to j counterparties, but it 

is in keeping with its own spreading powers.  

Thus, 

       Si
#<Si   for      (𝑣̃𝑖) > 0.                    (5.10) 



We will consider two formulations of the super-spreader tax: 

 

(𝑣̃𝑖) =  𝑣̃𝑖 ,     0< ≤ 1  or >1,                   (5.11a) 

                                  and (𝑣̃𝑖) = 𝑣̃𝑖
2 ,   0 < ≤ 1    or >1.        (5.11b)

                                                                        

19 Clearly, it is possible to apply the capital surcharge 𝜏(𝑣𝑖̃) in denominator of (5.9), 

Si
# =∑ 𝜃𝑗𝑖#𝑗 =  

1

(1+𝜏((𝑣𝑖̃))𝐶𝑖
 ∑ (𝑥𝑗𝑖𝑗 − 𝑥𝑖𝑗)+.This was, in fact, tried out in an earlier draft of the 

paper.But following the principle of ‘greedy’ algorithms as in the EIG algorithm of Giakkoupis et. 
al. (2005) that seeks the largest possible reductions of the maximum eigenvalue of the system, the 

current proposal in (5.9) was found to be more effective.Note, the algorithm applied (𝑣̃𝑖) in 

equation (15) was constrained to retain a non-negative matrix for ´#().  
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In (5.11a), the super-spreader tax (𝑣̃𝑖) is a linear function of a FI’s eigenvector 

centrality while the super-spreader tax is set proportionate to 𝑣̃𝑖
2rather than to 𝑣̃𝑖 

in (5.11b).  The advantage of this is that 𝑣̃𝑖
2is a naturally normalized variable with 

∑ 𝑣̃𝑖
2

𝑖 = 1.  Further, with the super-spreader tax being a function of 𝑣̃𝑖
2rather than 

𝑣̃𝑖 , this will penalize nodes with higher eigenvector centrality more than others.  

This is useful when the dominant eigenvector central node is distinctly more 

dominant than others and hence the progressivity of the tax rate becomes more 

apparent with the application of 𝑣̃𝑖
2 than 𝑣̃𝑖.  In contrast, when several nodes are 

equally dominant, the use of (𝑣̃𝑖 ) =  𝑣̃𝑖 is more appropriate. Finally, as 0 ≤ 

 (𝑣𝑖̃)<1, equation (17.a) can extract more tax across the population with non-zero 

centrality measures than a tax rate using 𝑣̃𝑖
2 and hence also deliver faster rates of 

decline of the maxof the system. 

 

The network stabilization algorithm will be called the EIG algorithm in keeping 

with Giakkoupis et. al.(2005).  The new matrix associated with Si
#() will be 

denoted as ´#().  The alpha parameter when set at 0 obtains the max associated 

with the untaxed initial matrix ´.  When =1, each node is exactly penalized by 𝑣̃ 

or𝑣̃𝑖
2 that yields the max for ´#().  Considering, 1>,there is a monotonic 

reduction in the max associated with the matrices {´#()} corresponding to the 

monotonic reduction in row sums Si
#(1) <Si

#(= 1) < ...<Si
#(= 0.75)<... 

<Si
#(= 0.5) <  ...<Si(=0).  The case of 1 may apply when the initial matrix 

´ needs a more aggressive application of the tax to stabilize the matrix to the 

point where Si
#(1) for all i such that max< for ´#(). Clearly, if > 1 is 

needed to stabilize the system, the sustainability of such a market for risk sharing 

is in question.  In fact, full stabilization to levels of max(´#) may not be 

technically possible and/or economically feasible. However, what the eigen-pair 

method of estimating and managing systemic risk in an interconnected financial 

network based on bilateral on- and off-balance sheet data provides is a clear cut 

mathematical benchmark for whether the system has become more or less 

unstable and who within it contributes most to this.   
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Stability Analysis in SRA 

Stability analysis view can be activated by selecting on a specific market  listed in the 

left explorer panel  Markets. Once a market is selected, the stability analysis action 

will be available on the toolbar by pressing the button . The user has to specify the 

value of the Tier 1 capital threshold vis-à-vis which the max()is compared to 
determine stability of the market. 

 

Figure 29 - Stability Analysis View 

Figure 29 shows the Stability analysis view in SRA once the stabilization is completed.20 

The stabilization algorithm implemented in SRA tries to reduce max() below the 

selected  by taxing the individual entries of the matrix according to right eigen 

vector centrality 𝑣̃𝑖 of each node. We recall 𝜃𝑖𝑗 =
1

𝐶𝑗
(𝑥𝑖𝑗 − 𝑥𝑗𝑖)+as the entries of the 

matrix Two basic tax regimes are implemented: 

1. Pre-Funded tax which applies a tax (𝑣̃𝑖 ) to the numerator according to eq. 
(5.2) 

                                                                        

20For very unstable markets, the stabilization process may require many seconds to complete. In that event, a 
progress bar showing the status of the stabilization will appear. 

I C O N  K E Y  

 Market 

 Markets 

 Stability Analysis 
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2. Ratio tax which applies a tax (𝑣̃𝑖  ) to the denominator (see footnote 5). 

The stabilization can also adopt a less severe tax procedure based on 𝑣̃𝑖
2 instead of 𝑣̃𝑖. 

The results are organized in several components presented in Figure 29: 

 Market Highlights Table (TOP LEFT of the view) highlighting the name of the 

market, number of active institutions and the max(). 

 Institutions Table (CENTRE LEFT) listing the right and left eigenvectors (𝑣̃ and 

𝑣 respectively) as well as the eigenvectors square. 

 Right Eigen Vectors Bar Plot (TOP RIGHT)graphically shows the distribution 

of the vector 𝑣̃. 

 Stabilization Table (CENTRE RIGHT) shows the stabilization results with 

different values of s according to the progression tax (𝑣̃𝑖 ) =  𝑣̃𝑖 , including the 
cost of taxation and the individual contribution of the nodes. 

 Stabilization plot (BOTTOM RIGHT) visualizes the decline of max() under 

different tax regimes to find the appropriate  that stabilizes the system. 
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