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ABSTRACT Systemic risk from financial intermediaries (FIs) refers to a negative externality problem,
which is rife with fallacy of composition-type errors. To ‘see’ why seemingly rational behaviour at the level of an
individual FI contributes to system-wide instability is a non-trivial exercise, which requires holistic visualization
and modelling techniques. Paradox of volatility inherent to market price-based measures of systemic risk has
made bilateral balance sheet and off balance data between FIs and network analysis essential for systemic
risk management. There is both a data and a skills gap in implementing large-scale data-driven multi-agent
financial network models that can operationalize macro-prudential policy. Different designs for a Pigou-type
systemic risk surcharge are discussed with special reference to the Markose eigen-pair method, which simul-
taneously determines the degree of instability of the network of financial flows of obligors and also the rank
order in the centrality of FIs contributing to it.
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INTRODUCTION
The 2007 financial crisis has undoubtedly
exposed shortcomings of monetary and macro-
economics1,2 and of the regulatory framework
of Basel II.3–6 Macroeconomic models and
their use in policy analysis have come under
severe criticism.7 Critics have accused macro-
economists of heavy reliance on a particular
class of macroeconomic models that has
abstracted away institutional details and finan-
cial interconnections in the provision of liq-
uidity, capital adequacy and solvency.8,9

Consequently, the paradigm shift needed and
skills gap that has to be fixed among academic
economists and their regulatory counterparts
is quite considerable in order to keep abreast

of the institutional and technological inno-
vations in monetary and financial sectors.
These innovations have created at least three
challenges:

(i) Unprecedented volumes of ‘inside’ money
via securitization and other forms of pro-
cyclical collateralized private credit.10,11

(ii) A shrinking of state-supplied cash in circu-
lation in low cash-based economies with an
IT-based payments technology, which has
changed payment habits and transactions
demand for money irrevocably and also
may have vitiated the monetary transmis-
sion of inflation in the consumer price
index (CPI).12,13
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(iii) A vast interconnected system of digital
transference of financial liquidity in real
time with very low latency, along with
‘algo’-based hyper high-frequency finan-
cial markets,14 often leveraged by instru-
ments such as contracts for differences.

I will argue that although the financial and
monetary sources of systemic risk are myriad
and protean as indicated above, placing reg-
ulators in a co-evolutionary arms race with
regulatees,15 the fundamental and recurrent
problem is how to maintain the stability of the
intermediated financial and monetary super-
structure, which rests on a fractional base of fiat
money. This world view had been eclipsed
for decades due to the longstanding primacy
of the rational representative agent in main-
stream neoclassical economics.16,17 A corollary
of this was micro-prudential regulation of Basel
I and II that focussed excessively on individual
banking units, with no analysis or monitoring
of the system-wide consequences of activities
of these units. In contrast, macro-prudential
policy18,19 aims to safeguard the financial system
as a whole by mitigating systemic risk factors
which can bring about system-wide, domino-
like failures of financial intermediaries (FIs) or
destabilizing imbalances such as asset price bub-
bles that accumulate over time.

On the eve of the collapse of Lehman
Brothers in September 2008 when the American
Insurance Group (AIG) also stood imperilled
due to its inability to make good on collateral
calls for credit default swap (CDS) guarantees on
mortgage-backed securities of large FIs, a lack of
data and models on the possible knock-on
effects in the United States and globally, forced
US Treasury and Federal Reserve officials to fly
blind at the critical juncture. The moral hazard
problem inherent to US, UK and European
taxpayer bailout of key FIs that ranged from full
and partial nationalization to financial guaran-
tees reached unprecedented amounts of over
US$14 trillion.20

This has aptly been called ‘too intercon-
nected to fail’. A prominent example of this

was the US bailout package of $85 billion for
AIG, which was geared towards averting sub-
stantial losses to its major counterparties.21

Post 2007, systemic risk from financial activ-
ities is being viewed as a negative externality
analogous to environmental pollution.22,23 In
this case, overuse and degradation of resources
occurs as clean-up costs are not internalized by
the polluting economic agents due to a missing
market. Likewise, oversupply of leverage and
excessive risk-taking by financial agents follow
because costs of their failure on others are not
borne by them in the spirit of a Pigou tax.24 The
state of play in both the control of pollution and
of financial leverage is that institutions have not
yet been designed or evolved to adequately
address the problem of aligning the interests of
the individual actor and system-wide stability.
To ‘see’ why seemingly rational behaviour at
the level of an individual FI contributes to
system-wide instability is a non-trivial exercise,
which requires holistic visualization and model-
ling techniques. Haldane25 proposed the use of
financial network models for the analysis of
systemic risk from financial contagion that
is driven by interconnected balance sheets.
Clearly, the absence of such a quantitative
modelling framework of the financial system
has impeded progress in the monitoring and
management of financial systemic risk.

The US Office of Financial Research was
set up in 2012 to overcome problems of balk-
anization of financial and banking data and to
have better models to provide quantitative
oversight of the financial system. Institutions
such as the European Central Bank, Inter-
national Monetary Fund and newly set up
financial stability divisions in different countries
with the Financial Stability Board (FSB) for
international coordination have intensified
efforts to develop modelling tools such as
financial network analysis,26 ‘big’ financial data
facilities,27 which require Information and
Communication Technology (ICT), and corre-
sponding systemic risk analytics.28

Steps are now underway to design ‘bail-
in’ arrangements at the time of failure of FIs
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as part of resolution procedures5,29,30 and
those that are paid for by FIs before failure to
alleviate unacceptable socialization of losses
from them. The focus of this article is on the
second of these. The FSB31 has identified a list
of global SIFIs (Systemically Important Financial
Intermediaries) and seeks to impose capital sur-
charges on a sliding scale from 1 to 2.5 per cent
depending on factors such as large size, promi-
nence inmarkets or functions (non-substitutability),
complexity, global activity and interconnected-
ness. Will such generic surcharges help mitigate
specific excesses such as the activities of SIFIs in
derivatives markets? To answer this and other
related questions, it is important to develop a
framework to quantify the surcharges on FIs and
to see whether they can mitigate the moral
hazard problem entailed in taxpayer bailouts.

Operationalizing systemic risk monitoring
and management of FIs, at a minimum, needs
to address the following: Is there a metric
that can identify if financial intermediation
is growing more unstable relative to Tier 1
capital in the system? Which FIs contribute to
this instability and how does the failure of
an FI result in domino losses in the ensuing
financial contagion? How can a Pigou tax
be shown to mitigate an FI’s negative extern-
ality? Indeed, the efficacy of a systemic risk
framework lies in whether it can help detect
potential threats reminiscent of the AIG or
Northern Rock debacle, viz. a combination of
excessive build-up of liabilities with growing
interconnectedness with counterparties. These
FIs in pursuit of privately rational objectives
of market share and short-term profits by
aggressively borrowing in the interbank
market and taking on large derivatives liabil-
ities positions, respectively, became potential
threats to the system. An important challenge
for a macro-prudential regulator is that of
curbing an FI’s excessive activity in a sector
using sectoral capital charges.32 Markose’s33

systemic risk framework, which will be dis-
cussed below, shows that the above FSB cap-
ital surcharges for global SIFIs are insufficient
to cover the implicit socialized guarantees in

place for the current level of their activities in
derivatives markets.

The discussion in the section ‘Systemic risk
of financial systems: old problem, new chal-
lenges’ will indicate the extent of the challenge
for systemic risk management as financial lever-
age and lending take a plethora of forms, which
have intertwined banks with non-bank FIs and
derivatives markets. The macro-prudential reg-
ulatory boundary is not one that can be pre-
defined. It must co-evolve with developments
on the ground. As the very size of the financial
sector has real-side negative consequences,34 the
final objective of a macro-prudential model is to
embed the financial sector model within a uses
and sources flow of funds framework for the
major economic sectors to monitor imbalances
between the sectors. The section ‘Digital map-
ping of the financial system from databases’
gives a brief overview of the ICT-based multi-
agent financial network (MAFN) modelling
tools which can build digital simulation plat-
forms from fine-grained, firm-level databases to
monitor and manage systemic risk from com-
plex interconnectedness of market participants
and potential perverse regulatory incentives that
may exist. Agent technology can provide an
antidote to the Lucas Critique that afflicts
macroeconometric models in policy-related
stress tests. Some insight into the relationship
between network topology and financial con-
tagion will also be given.

The section ‘Systemic risk metrics: statistical
versus causal linkages’ discusses the design issues
behind a metric for systemic risk as a negative
externalities problem. Market price-based sys-
temic risk measures favoured by many econo-
mists, as it is based on publicly available data, are
now recognized to be fraught with problems.
A brief overview given in the section ‘Paradox
of volatility: implications for market price-
based systemic risk measures’ of the so-called
paradox of volatility35 indicates that this detri-
mentally affects market price-based statistical
cross-correlation models of financial contagion
and systemic risk. This has meant that structural
bilateral balance sheet and off-balance sheet
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data-based network models are needed to study
systemic risk from financial interconnections.

The section ‘Systemic risk modelling with
bilateral balance sheet data-based network
models’ discusses how the financial network
approach can deliver on systemic risk model-
ling. Since the classic Furfine36 stress tests that
used financial balance sheet interlinkages to
analyse financial contagion from the failure of
a ‘trigger’ FI, a very large body of work using
network analysis (see Markose,33 Upper37 and
Yellen38 for recent reviews) has developed for
systemic risk management. Here, though finan-
cial network models have provided great visual
images of interconnectedness with some insights
into how financial networks become fragile and
propagate contagion, much of this literature has
not yet delivered on a design of a systemic risk
measure or a Pigou tax on the basis of an FI’s
balance sheet-based interconnections, let alone
a metric for network stability. Markose33 uses
the insight from May39,40 that network stability
depends on the size of the maximum eigenvalue
of an appropriate dynamical characterization of
the network system and a common threshold. It
is operationally convenient to be able to express
the network stability condition in terms of
a threshold rate of the policy variable, viz. Tier 1
capital. This has led to the so-called eigen-pair
method in Markose,33 in which there is a
simultaneous determination of the maximum
eigenvalue of the networked system of bilateral
liabilities of FIs adjusted for Tier 1 capital and
the corresponding right eigenvector centrality
measure which contributes to instability. These
metrics, based on actual bilateral financial
obligations, are simple to calculate and can be
monitored over time. Finally, I discuss issues
raised by Bisias et al28 in their survey on recently
proposed systemic risk analytics, especially for
the class of Pigovian capital surcharge. They
note that the many ad hoc model-related
assumptions, calibrations and data manipulations
make it questionable whether FIs will or should
be made to be liable for less than robustly
derived capital surcharges.41 The final section
gives some concluding remarks.

SYSTEMIC RISK OF FINANCIAL
SYSTEMS: OLD PROBLEM, NEW
CHALLENGES

Fractions and multipliers in financial
intermediation
At a substantive level, the main threat from
private credit-based liabilities is no different
from well-known problems with fractional
deposit banking. In both cases there is a poten-
tial for periodic collapse with knock-on effects
on several FIs and the real side of the economy
when en masse convertibility is triggered for
more liquid forms of central bank-regulated
funds for which the taxpayer remains liable.
Since the days of Henry Thornton,42 it has been
known that circulating private credit in the
form of commercial paper is discounted multi-
ple times in the chains of rehypothecation, to
use a neologism,43,44 which has to be redeemed
in sequence to avoid crashes. The most recent
manifestation of this, though not recognized as
such till after the 2007 crisis, came with the
proliferation of securitized banking where the
volume of non-depository short-term funding
is determined by ‘haircuts’ and rehypothecation
of mortgage-backed commercial paper as col-
lateral in the repo markets.10,45 This feature of
capitalism remains both an essential conduit of
funds as well as a potential threat to stability due
to convertibility problems in the fractional
system. The dominance of non-depository FIs
in the loanable funds markets in many G10
countries, which are subject to the same ‘runs’ as
banks, has meant that there is no sense in
regulating only banks for liquidity and capital
requirements. The regulatory boundary needs
to reflect the ever-changing forms of collater-
alized liquidity creation.

While the history of monetary institutions
and central banking is replete with attempts to
‘cap’46,47 or control both public and private
debt creation to deal with the fractional nature
of credit, the latter problem is now exacerbated
in that it can be leveraged further using deriva-
tives. A key aspect of recent innovations in
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private credit relationships is to rely on a com-
plex set of interlinking obligations between
a small number of FIs in terms of enhancements,
guarantees and derivatives for risk-sharing.6,48,49

Credit risk transfer from banks’ balance sheets
using credit derivatives also allows banks to
replace capital by unfunded contingent claims.
This was and continues to be the central plank
of Basel II and III.3,5,49 At the level of the
individual user, these schemes appear plausible
but at the macro-level they lead to systemically
unsustainable outcomes. In view of the struc-
tural concentration in the provision of risk
guarantees through financial derivatives, noted
as early as Darby,50 the topological fragility of
the modern risk-sharing institutions are ger-
mane to issues on systemic risk.33

There is the prospect that institutions51–53

may evolve to overcome the above pervasive
source of systemic risk from financial interme-
diation. However, in the meanwhile, the public
good aspect of the financial system dictates
comprehensive monitoring and regulation to
overcome such market failures. For this, as
envisaged in the extensive powers given to the
newly established macro-prudential regulators
in G7 countries, nothing short of a paradigm
shift has occurred.

The macro-prudential modelling
challenge
Many now recognize that there was an aberra-
tion54 in mainstream monetary economics and
central bank doctrines, which led central bank-
ers, in many a case by statute, to focus primarily
on a fixed rule to do with inflation target-
ing.55,56 The abrogation of responsibility by
central banks over the credit creation mechan-
ism came to the forefront in not seeing, respec-
tively, the threat from shadow banking,
which had grown to US$20 trillion in the United
States by 2008,57 and the increased lending
using mortgage-backed covered bonds by
banks in the core to those in the periphery
of the Eurozone to fuel a housing bubble.58,59

The transformation of the Phillips curve,

unbeknownst to most macroeconomists, man-
ifests in the flat CPI price inflation-output
trade-off in low cash-based G10 economies,
where inflation fell to around 2.5 per cent by
1994.13 This, along with the low volatility for
market risk that characteristically accompanies
asset bubbles, may have lulled monetary autho-
rities into a state of complacency, which has
sometimes been dubbed Great Moderation.60

This lack of inflationary overheating in low
cash-based economies allows the use of the
‘Greenspan put’ and loose monetary policy with
impunity to entrench asset price bubbles and
structural imbalances. Disintermediation from
real investment has meant that GDP growth
becomes correlated with the growth of the
financial sector and asset/commodity price bub-
bles, contributing to ever-growing systemic
risk. This has led many to regard the macro-
prudential modelling challenge as entailing the
embedding of a highly disaggregated financial
sector61,62 and, as will be discussed below, in the
case of agent-based models, a full electronic
mapping of the financial system, within a sectoral
uses-and-sources-of-funds framework to moni-
tor growing macroeconomic imbalances.

DIGITAL MAPPING OF THE
FINANCIAL SYSTEM FROM
DATABASES

A multi-agent financial network
(MAFN) model
Recently, many have emphasized the uses of
agent-based computational economics (ACE)
simulation platforms for digital mapping
and monitoring of the financial system, stress
testing and for institutional design (see
Buchanan,63 Farmer and Foley,64 Markose65

and Haldane66,67). These artificial environments
can depict real-time orientation, institutional
rules, and also complex interactions. For the
simulation framework to be useful for the
assessment of policy, financial firm-level
responses must be modelled in the context of
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prevalent market and regulatory conditions and
with automated access to balance sheet and off-
balance sheet data of FIs to anchor their finan-
cial decisions.

From the vantage of twenty-first-century
ICT-based tools, a non-economist may be
forgiven for painting the following picture of
how regulators manage systemic risk problems
in the financial system. Buchanan63 in a paper
in Nature gives an account of what advanced
IT-based tools can deliver: ‘A screen on the wall
maps the world’s largest financial players – banks,
governments and hedge funds – as well as the web of
loans … and other legal claims that link them. High-
powered computers have been using these enormous
volumes of data to run through scenarios that flush out
unexpected risks. And this morning they have trig-
gered an alarm… Flashing orange alerts on the screen
show that a cluster of US-based hedge funds has
unknowingly taken large ownership positions in
similar assets. If one of the funds should have to sell
assets to raise cash, the computers warn, its action
could drive down the assets’ value and force others to
start selling their own holdings in a self-amplifying
downward spiral. Many of the funds could be bank-
rupt within 30 minutes, creating a threat to the entire
financial system. Armed with this information, finan-
cial authorities step in to orchestrate a controlled
elimination of the dangerous tangle’. Needless to
say, such Web-based visualizations of financial
data and real-time operations relating to
financial crisis management is far from being
implemented. The fundamental computational
methodology for Web-based visualization of
complex data sets is object-oriented program-
ming (OOP) and multi-agent modelling.
The technological ICT aids of the ‘zoom’ that
can navigate between the coarse-grained bird’s
eye view and the fine-grained ones can mitigate
the well-known befuddling aspects of not
being able to see ‘the woods for the trees’. The
‘probe’ can automate and highlight behind the
scenes hidden links of each FI in multiple
markets. Unfortunately, such enabling technol-
ogies of advanced ICT economies have yet to
be harnessed for economic analysis and systemic
risk monitoring.

Agent-based computational economics or
ACE using the acronym coined by Tesfat-
sion68,69 is based on OOP that can produce
agents that are both inanimate (for example,
repositories of databases) as well as behavioural
agents capable of varying degrees of computa-
tional intelligence. These range from fixed rules
to fully adaptive agents representing real-world
entities (such as banks, consumers and regula-
tors) in artificial computer environments, which
can be replicas of, for instance, the financial
system. Unlike conventional programming in
which a program entails a list of tasks or
subroutines, in ACE and OOP, each agent,
which is an instance of a class, is capable of
interacting with other agents by receiving and
sending ‘messages’, processing data and produ-
cing outputs on the basis of their computational
intelligence. The outputs can be accessed by
the experimenter and the agents themselves using
‘probes’. There is considerable literature on ACE
models that have produced qualitative insights
into classic non-deducible self-organized out-
comes. These range from the Schelling70 model
on racial segregation to the Santa-Fe Institute
stock market model of Arthur et al,71 which
showed the endogenous generation of boom bust
cycles on account of the contrarian pay-off
structures in stock markets. Thurner et al72 gave
a recent example of how an agent-based simula-
tion model can leverage exacerbates boom bust
cycles in an artificial stock market model. How-
ever, the empirical data resolution end of these
ACE models is low for macro-prudential regula-
tory purposes.

In financial networks, nodes stand for finan-
cial agents such as banks, non-bank intermedi-
aries, the final end users and central banks. The
edges or connective links represent directed
inflows (in degrees) of liquidity or receivables,
and outflows (out degrees) represent obligations
to make payments. By database-driven MAFNs
it is meant that disaggregated data at the level
of individual FIs with regard to bilateral flows
to each of their counterparties will have to be
accessed electronically to provide ‘as is’ quanti-
tative characteristics.

Markose
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Figure 1 gives a stylized graph for the scope,
discussed in the section ‘Systemic risk of finan-
cial systems: old problem, new challenges’, of an
MAFNmodel, which incorporates the classes of
financial agents (depository and non-depository
FIs, items II, III and IV), types of financial
products/markets (RMBS, Repo, Derivatives,
Sovereign Bonds, Equities, items I, VI, VII
and VIII) and the complex interconnections
between them (the arrows and item XI). The
financial interconnections at a bilateral level for
all depository and non-depository FIs can be
embedded into a more aggregative framework

for the sectoral uses and sources of funds invol-
ving the household sector, government, non-
financial corporate sector, monetary and financial
sector and global flows. The item V in Figure 1
on Peer-to-Peer lending indicates the need to
include new financial sectors as they evolve.

In principle, each FI is a vector of financial
activities operating in a multi-layer system of
markets for different financial products, each of
which has its own network topology, institu-
tional incentives and constraints. This is illu-
strated in Figure 2. In the multi-layer networks
in Figure 2 (RHS), the broken vertical lines

Figure 1: Modelling of FIs and their interconnections for purposes of macro-prudential policy.

Figure 2: Single-layer network (LHS) and multi-layer networks (RHS).

Systemic risk analytics
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show the FIs that are common to the different
networks for financial products and hence they
can become the conduit by which an exogen-
ous shock in one market can be propagated
across other markets. However, to date, most
financial networks are modelled as single layer
ones, either of a single market or one which
represents aggregation of several products.
Full-scale developments of MAFN models as
hyper-networks73,74 are only in their infancy.
Nevertheless, for purposes of regulatory mon-
itoring, as will be seen, even quarter-by-quarter
snapshots of network visualizations and analytics
of bilateral financial flows data, whether for
specific financial products or as a single layer
network for flows aggregated over products, are
useful to gauge the instability of the system and
of the centrality or systemic importance of FIs
in it.

Integration and automation of financial data-
bases in an MAFN framework, therefore, aims
to transform the data from a document or
record view of the world to an object-centric
view,75 where multiple facts about the same
real-world financial entity are accessed to give
a composite visualization of their interactions
with other such entities in a scalable manner.
Without powerful integrative tools for sys-
tem-wide visualization of firm-level data per-
taining to all sectors of the financial system,
in an increasingly complex environment
where size of nodes or parts of networks alter
and new subnets form as new financial instru-
ments come on stream, it will be hard to ‘see’
or quantify systemic risk impacts of units such
as key broker-dealers, a sector such as a centra-
lized clearing platform (CCP) or a market for
unfunded claims such as credit derivatives. As in
the Buchanan’s excerpt above, orange alerts can
be assigned to threat factors such as over-
leveraged positions and the procyclicality of
underlying assets to the same macro-variable
that include house prices or debt of a specific
sovereign.

Until recently, the IBM MIDAS project75,76

and the EC grant FP6-034270-2 project of
Markose and Giansante currently being

implemented at the Reserve Bank of India (see
ACEfinmod.com) are the only known software
technologies being developed for large-scale
firm-level financial database-driven models
for systemic risk analysis.77 Since mid-2010, the
Financial Stability Unit of the Reserve Bank
of India has started mandating all depository
institutions (including foreign banks opera-
ting in India) and a large majority of the
non-depository FIs to submit bilateral financial
data for non-electronically cleared products
in the funded and unfunded derivatives
markets. Central Banks of Brazil and Mexico
are also mandating bilateral financial data from
their FIs.

The EURACE project aims to develop
a methodology for large-scale database-driven
multi-agent macroeconomic models for the
Eurozone.78 However, although some agent-
based exercises have been conducted with
simulated data, the EURACE project has not
produced any implementations of large-scale
database-driven agent-based macroeconomics
models. The RAMSI (Risk Assessment Model
for Systemic Risk Institutions) model of the
Bank of England is based on the balance sheet
data of the 10 core UK banks for 650 balance
sheet entries. In the absence of bilateral data,
the balance sheet bilateral interconnections are
modelled using the Entropy maximization
method, which as will be discussed is known to
introduce model risk. Aikman et al79 stress test
the model for asset and liability-side shocks,
which precipitate non-linear feedbacks like
those that arise from deleveraging and fire sales.
Calibrations are used to determine loss of capital
from fire sales. The counterparty failures add
to losses via the matrix of interbank exposures
for the top UK banks. Banks are each assigned
points on the basis of structural imbalances
such as reliance on short-term money markets,
maturity mismatch and so on, and those that
score points in excess of 35 are judged to be in
the danger zone. The absence of off-balance
sheet items and non-bank FIs clearly makes
the RAMSI model less than comprehensive
for purposes of systemic risk monitoring.

Markose
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Further, the lack of a publicly available
electronic data warehouse for quarterly data on
the financial statements of depository institu-
tions operating in the United Kingdom, let
alone those for non-depository FIs, implies that
there is some way to go before an MAFN
model with the scope of Figure 1 can be
developed for the United Kingdom even using
empirical calibrations for reconstructing finan-
cial interconnections.80

Finally, how does ACE compare with esti-
mation-based macroeconometric models for
policy analysis? In ACE, interactions of agents
produce system-wide dynamics that are not
restricted to pre-specified equations, which
have to be estimated using past data in econo-
metric or time-series approaches. In ACE, each
agent follows explicit rules or evolves strategies
under specified market conditions, and a ‘probe’
monitors causal internal workings and also
aggregates outcomes. In contrast, the main
drawback of estimation-based equation analyses
is their susceptibility to the Lucas Critique in
that structure changes from strategic behaviour
and tracing of causal links are almost impossible
to do. The idea that nodes in the network that
constitutes FIs and other financial actors are
themselves intelligent ‘agents’ autonomously
evolving strategies while operating within con-
straints and incentives provided by the markets
and regulations has not been fully operationa-
lized yet for purposes of policy design.81–83 In
response to the riposte by many5,84,85 that a
great source of systemic risk is perverse incen-
tives from policy, viz. policy fails precisely
when FIs comply with it, Markose et al49 give
an exemplar on how this can be monitored on
an ongoing basis using MAFNs. All FIs from
the US FDIC Call Reports data set from 2003
onwards that were involved in CDSs were
made to comply, by programming this in the
ACE model, with the Basel II incentives in
synthetic securitization to reduce capital from
8 to 1.6 per cent by keeping RMBS assets on
balance sheets and acquiring CDS guarantees.
The build-up of what became toxic RMBS
assets on major US banks’ balance sheets along

with CDS purchases, which were shown to
belong to a topological unstable network struc-
ture, followed as if according to a gory script!

In agent-based models, rule-following beha-
viour as in complying with the regulation and
the conduct of carry trade activity are relatively
easy to implement. This is because unlike fully
fledged adaptive behaviour, agents’ strategies,
intelligence and autonomy are limited to fol-
lowing the letter of the law and strictly verifying
conditions for which the most profitable arbit-
rage applies. The modeller, however, faces the
challenge of understanding the regulation, pro-
vide market conditions for the triggers that need
to be followed in a carry trade and then
implement the agents’ strategies in an algorithm.
Markose et al 49 argue that as stress tests for
perverse incentives of policy are among the
easiest of MAFN exercises, it must be de rigueur
in macro-prudential policy in order that flawed
policies do not get perpetuated.

Financial network topology and
propagation of contagion: Network
topology matters

The reason why it is important to map the
actual interconnections between FIs is because
network topology is a major determinant in
how contagion propagates and the system fails.
Interventions and stabilization crucially depend
on knowing who is linked to whom. In the
absence of actual bilateral financial data, the
bulk of the pre-2007 simulated financial net-
work models assumed that they were random
graphs or used the entropy maximization
method for network formation.

The latter aims to maximize the homo-
geneity of financial flows between an FI and its
counterparties. Many have discussed86,87 why
networks produced by the entropy method or
as random graphs are not suited to characterize
real-world financial networks. Some important
aspects of these discussions will be illustrated
here and also in the section ‘Systemic risk
metrics: statistical versus causal linkages’.
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Figure 3 shows a random graph (left) with no
specific structure or clustering and a highly
tiered core-periphery graph (right) that charac-
terizes OTC (Over-the-counter) derivatives
and to a lesser extent interbank credit markets.
FIs in the periphery have no links between
themselves, whereas those in the core have dense
interconnections amongst themselves.33,88

Markose et al 6,48 show how failure of a node,
the one placed in the centre of Figure 4,
propagates contagion in a random network
structure (right) and that in a core-periphery
sparse network (left). The latter depicts what it
means to be too interconnected to fail, typical of
the CDS38,48,49 and other derivatives mar-
kets.33 The highly tiered network has a central
core of large banks, which directly take a hit

when a similarly connected bank collapses. The
contagion stops at this point as the network
loses connectivity with the demise of the super-
spreaders. But in the spirit of being too inter-
connected to fail, four top banks are brought down
(Figure 4; left). It is of course cold comfort that
there are no second-order failures spreading
to the whole system when the first-order
shock wipes out the top four banks and some
70 per cent of Tier 1 capital of the system.
In contrast, the random network with no tiered
structure and no bank is too interconnected,
suffers as many as 17 (out of the 26) bank failures
in a series of cascades, which cannot be predicted
(Figure 4; right). Thus, in the context of con-
trolling epidemics, the clustered network allows
easier solutions in terms of inoculating the few

Figure 3: Graphical representation: random network (left), tiered network with core-periphery structure (right).

Figure 4: Instability propagation in clustered empirical CDS network (left) and in equivalent random network (right).
NB: Black nodes denote failed banks with successive concentric circles denoting the q-steps of the knock-on effects.
Source: Markose et al.6
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super-spreaders, whereas in the random net-
work the whole population has to be inocu-
lated. Haldane25 calls such hub banks ‘super-
spreaders’ and he recommends that super-sprea-
ders should have larger buffers. The vulnerabil-
ity of the tiered network to failures of any
member of the core, as stated by Haldane,25

requires that steps should be taken to reverse the
current practice of more lenient reserves and
collateral requirements for large broker dealers
than their less connected counterparts. There is
as yet no consensus as to how to operationalize
the ‘bail-in’ arrangements paid for by the FIs
themselves for their systemic risk impact on
others for being too interconnected.

SYSTEMIC RISK METRICS:
STATISTICALVERSUS CAUSAL
LINKAGES

Paradox of volatility: Implications for
market price-based systemic risk
measures
It is typical of most systemic risk measures, the
bulk of these being based on market price data
due to its availability, to first determine a measure
for the overall system risk and then attribute each
FI’s marginal contribution to it. However,

market price-based systemic risk measures have
been found not to work as early warning signals
in that by the time they have ‘spiked’, the market
will have tanked already. Figure 5(a) shows the
inherent inverse relationship and contempora-
neous extreme co-movements in the FTSE-100
index and the (option price-based) volatility
index, V-FTSE, which is publicly available.
Those familiar with Hamilton’s89 regime switch-
ing models will know that the volatility of stock
returns during market downturns are high while
during boom or bull market conditions, it is
low. The asymmetry in the correlation of stock
returns is also well known with higher correla-
tions recorded during market down trends
than up trends.90 Indeed, market data-based
volatility is at its lowest (Figure 5(a)) just before
the market crash and those who are ignorant of
this can be lulled into a false state of compla-
cency when systemic risk is building up on
balance sheets through increased indebted-
ness.91 In Figure 5(b),92 the Segoviano and
Goodhart93,94 CDS market price-based banking
stability index (solid line in Figure 5(b)) spikes
are at best contemporaneous with the crisis
marked by the publicly available volatility
indexes such as VIX or V-FTSE or at worse
will show up after the crisis. This is the case of
the distance-to-distress (DD) systemic risk mea-
sure used by Castren and Kavonius61 with a high

Figure 5: Problems with Market-based Systemic Risk Metrics – 5(a) Paradox of Stability (Minsky91) and the Paradox of
Volatility: Stock Index and Volatility Index (Borio and Drehmann35) 5(b) Banking Stability Index (Segoviano and
Goodhart93), Market VIX and VFTSE Indexes spike contemporaneously with crisis.

Systemic risk analytics

295© 2013 Macmillan Publishers Ltd. 1745-6452 Journal of Banking Regulation Vol. 14, 3/4, 285–305



    
  A

UTHOR C
OPY

DD signalling low distress. The DD measure
‘dropped sharply only after (italics added) the
crisis had started’ (ibid.). They claim that the
high DDs ‘in the years 2005–06 were mainly
driven by historically low volatility … even
though from the market leverage Chart 6, it is
clear that vulnerabilities were gradually accu-
mulating in the form of rising indebtedness in
most sectors’ (ibid.).

As the illusion of low market risk gets
worse at exactly the moment before the crash,
a Minsky-type91 paradox of instability phenom-
ena associated with procyclicality of leverage
with asset price booms has recently been redis-
covered by Borio and Drehmann35 in the form
of the volatility paradox. This is like driving
with a speedometer that has an iron-clad logic,
which says that the faster one drives (viz. larger
the bull market), the risk of having an accident
falls (lower market risk or the volatility of the
stock index returns).

Some of the market-based systemic risk mea-
sures that have been proposed are the following
(see Markose33 and May39 for a discussion on
these): Conditional VaR (CoVaR)95; Marginal
System Expected Shortfall (MSES)96; Co-risk
by Chau-Lau97; DIP (Distress Insurance Pre-
mium) by Huang et al98; POD (Probability
that at least one bank becomes distressed) by
Segoviano and Goodhart,93 Shapley value by
Tarashev et al99 and Macro-prudential capital
by Gauthier et al.100 Market price-based sys-
temic risk measures may mislead in the lead-up
to a crisis as they underprice risk during a boom.
However, as correlations in market price data
for the different FIs increase during market
downturns, the cross-sectional signals for the
potential direction for contagion are strong and
need close monitoring.

The market price data-based systemic risk
measures are popular because market prices are
publicly available whereas bilateral data across
counterparties and products have to be specially
mandated. In view of the fact that the paradox
of volatility in market price is particularly
difficult to overcome, it is bound to become
widespread practice to directly study balance

sheet interconnections for systemic risk. To
obtain their countercyclical forward CoVaR,
Adrian and Brunnermeier95 have directly
incorporated information on banks’ balance
sheet and financial liabilities/leverage ratios to
overcome pro-cyclicality of market price
data. Danielsson et al101 have shown that the
popular market price-based statistical systemic
risk analyses such as Adrian–Brunnermeier
CoVaR, and MSES of Acharya et al96 produce
a very imprecise measure of an individual
bank’s absolute contribution to total systemic
risk estimated, and also the ranking of banks by
the levels of systemic risk they create is not
robust due to model error. Hence, though
I am of the view that during market downturns
it is important to monitor the cross-section
information on the direction of contagion
based on correlation in market price data for
the FIs, for a lack of transparency in model-
generated data and systemic risk analytics
(see note 47) it is unlikely that a market price-
based measure of individual FI contributions
to systemic risk can be imposed as a Pigou
tax to engineer ‘bail-in’ arrangements paid
for by FIs.

Systemic risk modelling with
bilateral balance sheet data-based
network models
Bilateral balance sheet-based network models
are structural models that aim at depicting causal
chains between FIs rather than rely solely on
statistical correlations to estimate interconnec-
tions, which still remain the basis of most
extant financial contagion models. Although
most systemic risk approaches, first, determine
a measure for the overall system risk and then
attribute each FI’s marginal contribution to it,
interestingly, the bilateral balance sheet-based
financial network model of Cont et al 87 gives
only measures that rank the systemic risk con-
tributions of the different FIs and that of
Martinez-Jaramillo et al102 gives different net-
work centrality statistics for the FIs. They do
not give a metric for the instability of the
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network structure as a whole. The Cont et al 87

contagion index and ranking of an FI is based
on the expected loss of capital for the system as
a whole generated from stress tests that follow
with the failure of an FI. The factors explaining
these contagion indexes are then obtained by
quantile regressions. Martinez-Jaramillo et al102

give an exhaustive listing of network centrality
parameters but they are not related to whether
the financial network as a whole has become
more or less stable.

Bluhm and Krahnen,103 in part, aim to
extend the Shapley value allocation of systemic
importance of an FI first specified by Tarashev
et al 99 in a non-network setting of bilateral
financial obligations. Bluhm and Krahnen103

propose a system value-at-risk at a high con-
fidence level of total losses to FIs’ assets
from multivariate shocks. In a network setting,
instead of taking the marginal contribution of
an FI to system value-at-risk calculated in
the case of every possible coalition of FIs, the
Myerson-Shapley value (MSV) (see Kirman
et al104) requires that the marginal contribution
is calculated in terms of the weighted sum of
all possible network structures of one FI with
all other FIs. Further, not withstanding the
NP-hard problem here, with N number of FIs,
the MSV for an FI’s contribution to systemic
risk requires the FI’s marginal contribution to
all possible 2N−1 topological network config-
urations, which includes a given FI is weighted
equivalently on grounds of fairness.105,106

As discussed in the section ‘Systemic risk of
financial systems: old problem, new challenges’,
given the characteristic topology of financial
networks is far from random, it is not clear to
me how all the same-sized subnetworks that
contain an FI can be weighted alike, irrespective
of topology. It is often the case that some
simplifying assumptions have to be made to
overcome the dimensionality problem in the
Myerson-Shapley value calculations. Bluhm
and Krahnen103 consider only the maximum
size coalition or network (ibid., see Appendix)
and Bluhm et al23 assume a random sampling
of k different permutations.

Instability of large networks was first studied
by May.39,40 In these papers, May showed that
network stability depends on the size of the
maximum eigenvalue of an appropriate dyna-
mical characterization of the network system.
For a sparse network, which has a matrix of
bilateral entries given by (standard) normally
distributed real numbers, May39,40 derives a
closed-form solution for the maximum eigen-
value of the network. The May stability condi-
tion is defined in terms of three network
parameters: N, the number of nodes, C, the
probability that any two randomly selected
nodes are connected, and σ, the standard devia-
tion of node strength.107 When the latter statistic
is large, it indicates the asymmetry in the
number and weights of the out links that some
nodes have relative to others. A network is
determined to be unstable if its maximum
eigenvalue is greater than 1, viz.

ffiffiffiffiffiffiffiffi
NC

p
·σ>1.

May showed that an increase in the number of
nodes in a network along with its connectivity
that is also accompanied by a growing standard
deviation in node strength contributes to
instability. This implies the following trade-off,
not sufficiently understood by economists in
their studies of financial networks: if the size and
connectivity of a network grows, unless it
becomes more homogeneous in node strength,
it will become more unstable. Conversely, large
networks such as those for financial deriva-
tives,33 which have fat-tailed link distribution
and a large standard deviation in node strength,
need to have very low connectivity to remain
stable. Thus, network construction algorithms
such as the entropy maximization one86 by
homogenizing cell entries can reduce network
instability.

Markose33 uses the insights from May39,40

and Wang et al108 to give an appropriate
dynamical characterization of the financial net-
work system and determine the stability condi-
tions in terms of a threshold rate of the policy
variable, viz. Tier 1 capital. This has led to the
so-called eigen-pair method in Markose,33 in
which there is a simultaneous determination of
the maximum eigenvalue of the networked
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system of bilateral liabilities of FIs adjusted for
Tier 1 capital and the corresponding right
eigenvector centrality measure for who contri-
butes to instability.

Markose33 eigen-pair method for
systemic risk analytics
In order to simultaneously determine the stabi-
lity of the financial network system and the
contribution of each FI to this, it is useful to
model the dynamics of failures as in the epide-
miology literature, viz. the spread of ‘disease’
from other failed FIs. In the classic Furfine36

contagion stress test, any arbitrarily selected
trigger bank is monitored for the direct and
indirect failures it brings about on counter-
parties via their exposures to the trigger bank,
relative to their own capital.

The causal direction of the contagion,
and hence systemic risk of an FI, follows from
the ‘trigger’ FI, i, owing its counterparty, j,
more than what j owes i, relative to j’s Tier 1
capital. This is denoted by the positive entries
for net liabilities from i to j relative to j’s
capital given by elements θij= (xij−xji)

+/Cj0 in
matrix (1) for those pairs of FIs that have a
direct financial link.109 Here, Cj0 is j’s initial
capital. Hence, the matrix Θ that is crucial for
the contagion analysis will have elements given
as follows:

Failure of an FI is usually determined by the
criteria that losses exceed a predetermined buf-
fer ratio, ρ, of Tier 1 capital. In the epidemiol-
ogy literature,108 ρ is the common cure rate and
(1−ρ) is the rate of not surviving in the worst-
case scenario. The dynamics relating to the
probability of failure of each ith FI at a given

time step q+1 denoted by uiq+1, given j counter-
parties of i have failed at the previous time step
q. As shown in the Appendix, this is determined
by (i) i’s own survival probability given by the
capital, Ciq, it has remaining relative to initial
capital Ci0 (ii) and the sum of ‘infection rates’
defined by the sum of net liabilities of its j failed
counterparties relative to its own capital is given
by the term Σjðxji - xijÞ + =ðCi0Þ. Note the
‘infection rate’ or how counterparties impact
on an FI is pairwise heterogeneous.

It can be shown in Markose,33 and as out-
lined in the Appendix, that the stability of
the network system involving matrix Θ in (1)
requires that its maximum eigenvalue is less than
the homogeneous Tier 1 capital threshold, ρ:

λmaxðΘ′Þ< ρ (2)

If this condition is violated, a negative shock,
in the absence of outside interventions, can
propagate through the networked system as
a whole and cause system failure.

In the management of contagion and the
design of the super-spreader tax or inoculation
measures, it is important to understand the
relationship between the maximum eigenvalue
of the Θ matrix and its corresponding, respec-
tively, right and left eigenvectors ~v1 and v1.
Note, a matrix (with non-negative values) and
its transpose have the same maximum eigenva-
lue. However, the right and left eigenvectors

corresponding to λmax are different. Here, the
right eigenvector denoted by ~v1 corresponds to
the systemic risk metric for FIs relating to the
damage an FI can inflict on others as the
direction of impact in elements θij in matrix (1)
arise from the liabilities of i to j. In contrast, the
left eigenvector denoted by v1 relates to the

Θ=

0 ðx12 - x21Þ +
C20

ðx13 - x31Þ +
C30

0 :::: 0

0 0 ðx23 - x32Þ +
C30

:::: :::: ðx3N - xN3Þ +
CN0

: : 0 :::: :::: :
ðxi1 - x1iÞ

C10
: ::: 0 ::: ðxiN - xNiÞ

CN0

: : ::: ::: 0 :
ðxN1 - x1N Þ +

C10
: :::

ðxNj - xjN Þ +
Cj0

::: 0

2
66666664

3
77777775
: (1)
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exposure index of FIs, viz. the damage an FI
faces from others from elements θij of the matrix
transpose Θ′ of (1). The power iteration algo-
rithm that determines the maximum eigenvalue
of the matrix Θ also determines its correspond-
ing eigenvector,~v1, which yields the rank order
of the centrality of the FIs vis-à-vis the instability
metric of the system given by λmax. What is
important to note, as discussed in Markose,33

is how the power iteration algorithm yields
a simple relationship between the upper bound
of λmax and the maximum row (column) sum110

of the matrix Θ′ (Θ in (1)). Further, high
eigenvector central, EVC, nodes score highly
because their connections to high-scoring nodes
contribute more to the EVC score of the node
in question than equal connections to low-
scoring nodes. Denoting ~vi as the right eigen-
vector centrality for the ith node for matrix Θ,
the centrality score is proportional to the sum of
the centrality scores of all nodes to which it is
connected. Hence,

~vi =
1

λmax

X
j

θij~vj: (3)

Using vector notation, the eigenvalue
equation for the matrix in (1) for the eigenpair
(λmax, ~v1) is given as:

Θ~v1 = λmax
~v1: (4)

Thus, high EVC FIs with high connectivity
to a large number of highly connected counter-
parties can contribute greatly to the instability of
the system when λmax>ρ. Note, using the
eigenvalue equation, the left eigenvector is
defined as

v1Θ=Θ′v1 = λmaxv1: (5)

In Θ′v1, as the matrix transpose of (1) is
involved with elements θji denoting exposure of
i to j (rather than the case of the impact of i’s
liabilities on j in θij in (4)), the rank order of the
left eigenvector v1 gives the measure of those
that are most vulnerable or exposed to others
in the system.

In what follows, the role of row sums in the
stability of the system Θ′ will be exploited to

determine the Pigou tax for an FI as a function
of its eigenvector centrality, denoted by τð~viÞ.
Given the relative simplicity in the determi-
nation of the above systemic risk metrics for
the matrix in (1), which yields the appropri-
ate dynamical system for the demise of FIs
from failing counterparties, the eigen-pair
method was used on the bilateral financial data
for a large Asian interbank market for quarters
from mid-2010 to end of 2011. Remarkably,
a situation reminiscent of the aggressive bor-
rowing on the interbank, short-term money
markets done by UK banks that demised in the
2007 crisis was observed. From mid-2011,
a bank that was ranked number 5 or 6 in terms
of eigenvector centrality in mid-2010 was
seen to have catapulted to the most EVC
bank within a few quarters. A combination
of increased connectivity of the FI and its large
liabilities relative to the distribution of capital in
the system accounts for its dominant EVC
position. Clearly, what is rational/profitable for
this bank that enabled it to increase its loan
market share led to an adverse loss of stability
for the interbank system as a whole. System-
wide capital losses from a Furfine-type36 stress
test, with this bank as the trigger, jumped to
29.4 per cent from more modest levels of 6–14
per cent in previous quarters when other banks
were dominant in terms of eigenvector central-
ity. This real-world exercise shows that it is
not sensible to have a priori lists for SIFIs in
macro-prudential policy and that sudden jumps
in eigenvector centrality of a bank should give
cause for concern.

A progressive Pigou tax for EVC FIs
Each FI is taxed according to its right EVC τð~viÞ
in order for the FI to internalize the costs that
they inflict on others by their failure and to
mitigate their contribution to network instabil-
ity as given by λmax. The progressive nature of
the tax justifies the moniker ‘super-spreader’
tax. The rationale behind the application of the
right eigenvector centrality of a node as the basis
of the Pigou tax is to enable an FI to provide
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a buffer proportional to its own capacity to
propagate contagion.

The network stabilization algorithm has
been called the EIG algorithm,33 in keeping
with Giakkoupis et al.111 The main objective
of the EIG algorithm is to apply to each i a
tax denoted by τð~viÞ in order to bring down
the maximum eigenvalue of the Θ matrix
to the desired threshold ρ. The details of
this can be found in Markose33 and Markose
et al.48

The nature of the systemic risk stabilization
super-spreader fund is that it operates like an
escrow fund. The funds commensurate to each
FI’s surcharge as a proportion of its Tier 1 capital
are collected at some initial point, whether
within a CCP context or by the regulatory
authority. The funds are deployed at the time
of potential failure of an FI for the collective
good to mitigate taxpayer bailouts of the failing
bank in order to prevent a financial contagion.
Some backtesting of this has been done in
Markose33 and Markose et al.48 Furthermore,
the right EVC of an FI as a metric for its
systemic importance has been empirically vali-
dated as a good proxy of the actual losses of
capital that it can bring about as a trigger in a
Furfine contagion stress test for the Indian
financial system. The correlation in the rank
order of the EVC of FIs and that for the capital
losses they bring about as a trigger in the Furfine
stress test was over 98 per cent in all the four
quarters for which it was analysed.

Many of the financial network models for
systemic risk modelling87,112 use the network
framework to study the impact of one or more
of the factors that are known to accompany
and exacerbate a financial crisis. These factors
are strictly extraneous to the weighted net-
work of financial flows that represent contrac-
tual obligations. These factors include: (i) the
impact of common macroeconomic shocks,
such as a rise in interest rates or a fall in house
prices that depress balance sheets, (ii) second-
order effects from fire sales and deleveraging,23

(iii) probabilistic considerations of future losses
arising from the course of a contagion. These

are interesting stress tests that can inform
regulators of the extent of losses under dif-
ferent scenarios. However, going by the
spirit of financial market laws, an FI cannot
be held culpable for damage to others from
pre-existing macroeconomic conditions such
as loose monetary conditions or future market
conditions that may arise, for example, during
deleveraging that are unknowable at the time
of contracting. The eigen-pair method has the
advantage that it is based only on extant
bilateral contractual financial obligations of
FIs and their Tier 1 capital and the network
topology that is implied by the certified bilat-
eral data submissions.

CONCLUDING REMARKS
As noted by Winter,113 ‘monitoring and under-
standing the overall health of institutions and
markets and the connections between them
across the entire breadth of the financial system’
is an ambitious objective for which central
banks and financial authorities have been given
enormous powers as with the Dodd–Frank Act
in the United States and the 2012 Financial
Services Act in the United Kingdom. One of
these powers is that of mandating requisite
financial data from FIs to overcome problems
of market failure. In addition, the 2007 crisis has
shown that extant policy models and quantita-
tive tools are too antiquated for the tasks of
macro-prudential policy, which requires holistic
visualization of ‘big’ financial data. The ICT-
oriented MAFN framework has been proposed
as a way of tackling this. With these new ICT
tools, the mapping of actual financial intercon-
nections to analyse propagation of instability or
contagion in the system can be done at a level of
granularity and virtual depiction of reality, not
currently available in a mainstream macro-
economics tool box. Also, as we must avoid
‘official definitions of systemic risk that have left
out the role of government officials in generat-
ing it’,84 MAFN simulation platforms are well
suited to conduct ‘wind tunnel’ tests of policy
both before implementation as well as after it in
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order to monitor it on an ongoing basis for its
capacity to generate race to the bottom-type
tactics or for destabilizing carry trades.

There are fundamental problems with regard
to market price-based systemic risk measures to
do with the volatility paradox and a lack of
empirical robustness with calibrations in the
construction of financial interconnections from
balance sheet and off-balance sheet data, which
is aggregated over all counterparties. I have,
therefore, emphasized the need for central
banks to mandate the required bilateral data
from bank and non-bank FIs with sufficient
granularity in terms of funded and unfunded
balance sheet items. This has been done since
mid-2010 at the Reserve Bank of India, with
some promising results for systemic risk
monitoring.

A lot of focus has been given to ‘bail-in’
arrangements as part of the resolution process at
the time of failure of an FI to mitigate taxpayer
bailouts. However, one of the important lessons
of the 2007 crisis is that prevention is a good
policy. The ‘bail-in’ funds paid for by FIs
themselves in the form of a Pigou tax have
been proposed for the FIs to internalize the
externalities from being ‘too interconnected’
relative to available capital. The eigen-pair
method proposed has the advantage of being
transparent, simple to calculate and progressive.
The FI that is the most eigenvector central can
change over time and this can be monitored
over time as well. The Markose33 eigen-pair
method eschews many features, present in other
proposals for systemic risk measures, that are
extraneous to the actual matrix of contractual
obligations between FIs. While these features
are important in the context of macro-pruden-
tial stress testing, I have argued that they cannot
reasonably be made the basis of a systemic risk
Pigou tax to be paid for by an FI. Preliminary
backtesting of the ‘bail-in’ escrow fund gar-
nered from the eigenvector centrality-based
Pigou taxes can nip in the bud potential con-
tagion effects from the failure of a large SIFI
within the context of the network of obliga-
tions for which it is designed.
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APPENDIX
The dynamics characterizing transmission of
‘infection’ in a financial networked system can
be given by:

uiq + 1 = ð1 - ρÞuiq +
X
j

ðxji - xijÞ
Ci0

+

u1jq: (A.1)

Here, we have an FI’s own metric of failure
at q, which is given by uiq= (1−Ciq/Ci0), where
Ciq/Ci0 is the ratio of capital at q and capital at
initial date. The second term in (A.1) involves
the losses from counterparties, j, that fail at q and
these are denoted by an indicator function,
which is set equal to 1. The sum of ‘infection
rates’ defined by the sum of net liabilities of its j
failed counterparties relative to its own capital is
given by the term ðΣjðxji - xijÞ + =ðCi0ÞÞ.

In order for the eigen-pair stability analysis to
be used, in matrix notation the dynamics of
financial contagion takes the following form:114

Uq + 1 = ½ð1 - ρÞI +Θ′�Uq =QUq: (A.2)

Here, Θ′ is the transpose of the matrix in (1)
with each element θij′= θji and I is the identity
matrix.

The system stability of (A.2) will be evalu-
ated on the basis of the power iteration of the
matrix Q. From (A.2), Uq takes the form:

Uq =QqU0: (A.3)

Markose33 shows how the stability of the
system in (A.3) as q tends to infinity requires that
the maximum eigenvalue, λmax, is less than the
common threshold on capital, ρ.
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